scholarly journals Rheological properties of dispersed-filled polymer composite materials based on polyethylene containing glass microbeads

2021 ◽  
pp. 35-38
Author(s):  
Q. D. Pham ◽  
P. V. Surukov

This article presents the results of a study of the effect of the filler content on the rheological properties of polymer composite materials based on high density polyethylene containing glass microbeads. The flow curves of the compositions were obtained by the method of capillary viscosimetry. Simple mathematical models have been constructed that allow estimating the viscosity of the compositions’ melts based on a given filler content.

2020 ◽  
pp. 19-22
Author(s):  
D. D. Krechetov ◽  
A. N. Kovaleva ◽  
I. D. Simonov-Emelianov

The article presents the results of a study of the rheological characteristics of dispersion-fi lled polymer composite materials (DFPCM) based on LDPE and glass balls of the ШСО-30 brand in a wide range of processing temperatures. For the fi rst time, the rheological properties of dispersion-fi lled polymer composite materials are considered from the standpoint of the formation of the dispersed phase with diff erent types of lattices, functional division of the polymer matrix (φp = Θ + В + М) and the construction of dispersed systems with diff erent types of structures (DS, LFS, MFS, HFS) in terms of generalized parameters (Θ, amid/d). This approach allows us to predict and describe the rheological properties for all DFPCMs with diff erent types of dispersed structures, using a dispersed phase (fi ller) with known geometric dimensions (d), packing density (parameter kpacking and φm) based on this polymer matrix. The infl uence of temperature on the processing technology of DFPCM with diff erent types of structures into products by injection molding has been established.


Author(s):  
Прут ◽  
Eduard Prut ◽  
Черкашина ◽  
Natalya Cherkashina ◽  
Ястребинская ◽  
...  

This paper presents data on the development of polymer composite materials based on thermoplastic elastomers. As starting materials for the synthesis of the matrix components were selected as follows: isotactic polypropylene and ternary ethylene-propylene-diene elastomer (EPDM). Diene component in EPDM are ethylidene norbornene composition in an amount of 4-5%. Dynamic vulcanization was carried out using the elastomer element sulfur. The filler polymer composite materials used silica gel with dimethyl polysiloxane. Synthesis was carried out by filling the sol-gel technology. The filler content in the composite varied from 10 to 80% by weight. Mixing of filler and the matrix was performed in a laboratory twin-rotor mixer, type "Brabender". It is found that the maximum possible filler content of the matrix used was 80%. With the introduction of more filler mixing of the components it has been difficult. When the filler content from 10 to 70% of parameters such as tensile strength, flexural strength and modulus of longitudinal elasticity increasing and administered at higher filler and 80 wt%. markedly reduced. Thus, it can be concluded that the content of filler in the composite is 70%. Further research should be directed to the evaluation of the radiation resistance of the developed composite materials.


2018 ◽  
Vol 777 ◽  
pp. 32-36
Author(s):  
Irina Garkina ◽  
Alexander Danilov

The rheological properties of polymer composite materials for special purposes in molecular, structural and complex plasticization are investigated. The possibility of approximating the rheological properties of epoxy composites to protect against radiation by a multiplicative polynomial-exponential function is shown (approximation of the functions of two arguments in the form of a product of two one-dimensional functions). Analytical dependences of the viscosity of epoxy binder on temperature and percentage of additive are given. The results of optimization (optimal concentration of plasticizer) are indicated.


2018 ◽  
Vol 238 ◽  
pp. 05003
Author(s):  
Lien Zhu ◽  
Di Wu ◽  
Baolong Wang ◽  
Jing Zhao ◽  
Meihua Liu ◽  
...  

Phenolic spheres are synthesized through resorcinol and formaldehyde. The phenolic spheres were blended with HDPE to prepare binary composites. The rheological properties and mechanical properties of the composites were studied. The composite materials have higher tensile strength and impact strength than pure HDPE, which extends the application of the material.


2017 ◽  
Vol 44 (7) ◽  
pp. 9-12
Author(s):  
V.S. Anpilogova ◽  
T.P. Kravchenko ◽  
N.Yu. Nikolaeva ◽  
Nei Zo Lin ◽  
V.S. Osipchik

The rheological properties of nanocomposites based on high-density polyethylene are considered. The advantages of introducing carbon nanotubes and laproxide as modifiers of high-density polyethylene to control their rheological properties are shown. The promise of composite materials is not in doubt. A considerable number of studies have been devoted to this group of materials. However, many aspects of the practical realisation of the properties of these materials remain inadequately developed [1].


Author(s):  
Ch. N. Nguyen ◽  
M. V. Sanyarova ◽  
I. D. Simonov-Emel’yanov

Objectives. The aim is to calculate the composition of dispersion-filled polymer composite materials with different fillers and structures and to highlight differences in the expression of said composition in mass and volume units.Methods. The paper presents the calculation of compositions in mass and volume units for various types of structures comprising dispersion-filled polymer composite materials according to their classification: diluted, low-filled, medium-filled, and highly-filled systems.Results. For calculations, we used fillers with densities ranging from 0.00129 (air) to 22.0 g/cm3 (osmium) and polymer matrices with densities between 0.8 g/cm3 and 1.5 g/cm3 , which represent almost all known fillers and polymer matrices used to create dispersion-filled polymer composite materials. The general dependences of the filler content on the ratio of the filler density to the density of the polymer matrix for dispersion-filled polymer composite materials with different types of dispersed structures are presented. It is shown that to describe structures comprising different types of dispersion-filled polymer composite materials (diluted, low-filled, medium-filled, and highly-filled) it is necessary to use only the volume ratios of components in the calculations. Compositions presented in mass units do not describe the construction of dispersion-filled polymer composite material structures because using the same composition in volume units, different ratios of components can be obtained for different fillers.Conclusions. The dependences of the properties of dispersion-filled polymer composite materials should be represented in the coordinates of the property – content of the dispersed phase only in volume units (vol % or vol. fract.) because the structure determines the properties. Compositions presented in mass units are necessary for receiving batches upon receipt of dispersion-filled polymer composite materials. Formulas are given for calculating and converting dispersion-filled polymer composite material compositions from bulk to mass units, and vice versa.


2016 ◽  
Vol 2 (2) ◽  
pp. 37-42 ◽  
Author(s):  
E. N. Kablov ◽  
L. V. Chursova ◽  
A. N. Babin ◽  
R. R. Mukhametov ◽  
N. N. Panina

Sign in / Sign up

Export Citation Format

Share Document