scholarly journals Reinforcing high-density polyethylene by phenolic spheres

2018 ◽  
Vol 238 ◽  
pp. 05003
Author(s):  
Lien Zhu ◽  
Di Wu ◽  
Baolong Wang ◽  
Jing Zhao ◽  
Meihua Liu ◽  
...  

Phenolic spheres are synthesized through resorcinol and formaldehyde. The phenolic spheres were blended with HDPE to prepare binary composites. The rheological properties and mechanical properties of the composites were studied. The composite materials have higher tensile strength and impact strength than pure HDPE, which extends the application of the material.

2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


2017 ◽  
Vol 756 ◽  
pp. 35-43
Author(s):  
Martin Bednarik ◽  
Adam Skrobak ◽  
Vaclav Janostik

This study deals with the effect of high doses of ionizing beta radiation (132, 165 and 198 kGy) on mechanical properties (tensile strength, tensile modulus and elongation) of low and high density polyethylene under thermal loading. The measurement results of this study indicate that with an increasing dose of radiation grows tensile strength and modulus of low and high density polyethylene. For all examined materials were also observed changes in elongation.


2021 ◽  
pp. 35-38
Author(s):  
Q. D. Pham ◽  
P. V. Surukov

This article presents the results of a study of the effect of the filler content on the rheological properties of polymer composite materials based on high density polyethylene containing glass microbeads. The flow curves of the compositions were obtained by the method of capillary viscosimetry. Simple mathematical models have been constructed that allow estimating the viscosity of the compositions’ melts based on a given filler content.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Vu Manh Tuan ◽  
Da Woon Jeong ◽  
Ho Joon Yoon ◽  
SangYong Kang ◽  
Nguyen Vu Giang ◽  
...  

The TiO2nanoparticles were used as a reinforcement to prepare nanocomposites with high density polyethylene (HDPE) by melt blending process. The original TiO2(ORT) was modified by 3-glycidoxypropyltrimethoxysilane (GPMS) to improve the dispersion into HDPE matrix. The FT-IR spectroscopy and FESEM micrographs of modified TiO2(GRT) demonstrated that GPMS successfully grafted with TiO2nanoparticles. The tensile test of HDPE/ORT and HDPE/GRT nanocomposites with various contents of dispersive particles indicated that the tensile strength and Young’s modulus of HDPE/GRT nanocomposites are superior to the values of original HDPE and HDPE/ORT nanocomposites. At 1 wt.% of GRT, the mechanical properties of nanocomposites were optimal. In DSC and TGA analyses, with the presence of GRT in the nanocomposites, the thermal stability significantly increased in comparison with pure HDPE and HDPE/ORT nanocomposites. The better dispersion of GRT in polymer matrix as shown in FESEM images demonstrated the higher mechanical properties of HDPE/GRT nanocomposites to HDPE/ORT nanocomposites.


2017 ◽  
Vol 25 (4) ◽  
pp. 299-308 ◽  
Author(s):  
M.A. Abedini Najafabadi ◽  
S. Nouri Khorasani ◽  
J. Moftakharian Esfahani

This study investigates the effect of the addition of nanoclay (Cloisite 20A) on some mechanical properties, % relative brightness (ΔLrel) and total colour change (ΔEab) of high density polyethylene (HDPE)/pistachio shell flour (PSF) composites when exposed to accelerated weathering conditions. X-ray diffraction (XRD) patterns of samples containing 3 and 6 per hundred composite (phc) of nanoclay indicated partial exfoliation and intercalation. The tensile modulus and tensile strength of HDPE/PSF composites (without nanoclay) decreased when the exposure time increased to 1500 h, while the tensile modulus and tensile strength increased. For samples with nanoclay, ΔLrel and ΔEab increased upon accelerated weathering conditions up to 500 h, and thereafter remained constant. But results show that ΔLrel and ΔEab increased significantly upon accelerated weathering exposure in HDPE/PSF samples up to 1500 h. Scanning electron microscopy (SEM) results after 1500 h exposure to weathering condition showed signs of the presence of cracks in samples without nanoclay, unlike the samples with nanoclay.


2011 ◽  
Vol 284-286 ◽  
pp. 1842-1845
Author(s):  
Jue Wang ◽  
Gui Xiang Hou

Polystyrene(PS)/Polystyrene-expanded graphite(EG)(PS/PSEG) composites were prepared by melt blending, using a variety of PSEG. The electrical and mechanical properties of the PS/PSEG were measured. Mechanical property measurements of composites indicated higher impact strength and lower tensile strength with increasing content of PSEG. Exfoliated graphite has seen a significant reduction for composites in electrical resistivity.


2010 ◽  
Vol 146-147 ◽  
pp. 310-313
Author(s):  
Ying Peng ◽  
Jian Hua Liu

The synergistic toughening of UPR composite by rigid particles of organic PA6 and inorganic nano-SiO2 was studied. The effects of PA6 and SiO2 on the notched impact and tensile strength of the UPR composite were studied by means of the mechanical properties test. The experimental results indicated that the notched impact strength was improved and its effect was evident when 7-9%rigid particles were applied and the tensile strength was improved when the 2-5% rigid particles were applied. The composite of PA6/SiO2 ( 2/1) exhibited good mechanical property in the synergistic toughening. By the micromechanical analysis of composite, we thought that the stiffness of composite materials was determined by the stress suffered the rigid particles and the deformation of UPR polymer phase.


2017 ◽  
Vol 267 ◽  
pp. 76-81 ◽  
Author(s):  
Janis Kajaks ◽  
Karlis Kalnins ◽  
Anita Zagorska ◽  
Juris Matvejs

One type of birch wood plywood by-product: plywood sanding dust (PSD) and recycled high density polyethylene (rHDPE) composites physical mechanical properties (tensile, flexural strength and modulus, impact strength and microhardness), water resistance and fluidity of the composite melts, were evaluated. These studies showed the possibility of the usage of presented by-product as an excellent reinforcement for recycled high density polyethylene matrix. It was observed that the modulus of the tensile for unmodified rHDPE+PSD composites increased up to 2.3 times, the modulus of flexural till 4 times, but the microhardness only 1.4 times. Optimal content of the PSD in recycled high density polyethylene composites could be 50 wt. %. As a coupling agent, the maleated polyethylene (MAPE) for modifying of the rHDPE+50 wt. % PSD composite was used. Due to the MAPE additives, the improvement (30-50 %) of the investigated exploitation properties was observed, but in comparison with unmodified composites the resistance of water increased up to 3.0 times. Optimal content of MAPE in rHDPE+50 wt. % PSD composition could be 3 wt.%.


2010 ◽  
Vol 150-151 ◽  
pp. 379-385
Author(s):  
Qun Lü ◽  
Qing Feng Zhang ◽  
Hai Ke Feng ◽  
Guo Qiao Lai

The wood-plastic composites (WPC) were prepared via compress molding by using the blends of high density polyethylene (HDPE) and modified polyethylene (MAPE) as the matrix and wood flour (WF) as filler. The effect of MAPE content in the matrix on the mechanical properties of the matrix and WPC was investigated. It was shown that the change of MAPE content in the matrix had no influence on the tensile strength of the matrix, but markedly reduced the impact strength of the matrix. Additionally, it had significant influence on the strength of WPC. When the content of wood flour and the content of the matrix remained fixed, with increasing the content of MAPE in the matrix, the tensile strength and the flexural strength of WPC tended to increase rapidly initially and then become steady. Moreover, with the increasing of MAPE concentration, the impact strength of WPC decreased when the low content of wood flour (30%) was filled, but increased at high wood flour loading (70%).


Sign in / Sign up

Export Citation Format

Share Document