scholarly journals Rheological properties of dispersion-filled thermoplastics with different types of structures at various processing temperatures

2020 ◽  
pp. 19-22
Author(s):  
D. D. Krechetov ◽  
A. N. Kovaleva ◽  
I. D. Simonov-Emelianov

The article presents the results of a study of the rheological characteristics of dispersion-fi lled polymer composite materials (DFPCM) based on LDPE and glass balls of the ШСО-30 brand in a wide range of processing temperatures. For the fi rst time, the rheological properties of dispersion-fi lled polymer composite materials are considered from the standpoint of the formation of the dispersed phase with diff erent types of lattices, functional division of the polymer matrix (φp = Θ + В + М) and the construction of dispersed systems with diff erent types of structures (DS, LFS, MFS, HFS) in terms of generalized parameters (Θ, amid/d). This approach allows us to predict and describe the rheological properties for all DFPCMs with diff erent types of dispersed structures, using a dispersed phase (fi ller) with known geometric dimensions (d), packing density (parameter kpacking and φm) based on this polymer matrix. The infl uence of temperature on the processing technology of DFPCM with diff erent types of structures into products by injection molding has been established.

2018 ◽  
Vol 777 ◽  
pp. 32-36
Author(s):  
Irina Garkina ◽  
Alexander Danilov

The rheological properties of polymer composite materials for special purposes in molecular, structural and complex plasticization are investigated. The possibility of approximating the rheological properties of epoxy composites to protect against radiation by a multiplicative polynomial-exponential function is shown (approximation of the functions of two arguments in the form of a product of two one-dimensional functions). Analytical dependences of the viscosity of epoxy binder on temperature and percentage of additive are given. The results of optimization (optimal concentration of plasticizer) are indicated.


2021 ◽  
pp. 35-38
Author(s):  
Q. D. Pham ◽  
P. V. Surukov

This article presents the results of a study of the effect of the filler content on the rheological properties of polymer composite materials based on high density polyethylene containing glass microbeads. The flow curves of the compositions were obtained by the method of capillary viscosimetry. Simple mathematical models have been constructed that allow estimating the viscosity of the compositions’ melts based on a given filler content.


2021 ◽  
Vol 316 ◽  
pp. 9-15
Author(s):  
N.Y. Efremov ◽  
O.A. Oreshina ◽  
V.D. Mushenko

Polymer composites are one of the types of modern functional materials. This class includes many different in structure and field of application materials, including dispersed-filled polymer composites [1]. Such materials are made by mixing a polymer matrix in a fluid state with a powder filler and then curing. The properties of the resulting materials are influenced by a variety of factors, including the nature of the preliminary (prior to addition to the mixture with the polymer) mechanical-chemical processing of the filler.


2015 ◽  
Vol 21 (3) ◽  
pp. 873-877
Author(s):  
Răzvan Petre ◽  
Nicoleta Petrea ◽  
Gabriel Epure ◽  
Teodora Zecheru

Abstract The polymer composite materials properties are clearly determined by their constituent properties and by the micro-structural configuration. Additives and modifiers ingredients can expand the usefulness of the polymeric matrix, enhance the processability or extend composite durability. The fibres are mainly responsible for the performance changing (strength and stiffness properties). The least structurally demanding cases is the arrangement of fibres randomly in polymeric matrix, when equal strength is achieved in all directions. Fibre reinforced polymer materials can be successfully used in a wide range of applications and can significantly improve the characteristics of chemical protection equipments and foster the development of new ones with superior features.


2020 ◽  
Vol 63 (7) ◽  
pp. 111-118
Author(s):  
Elena A. Kiyanenko ◽  
◽  
Artur D. Nurislamov ◽  
Ksenia V. Golovanova ◽  
Gulnara I. Amerkhanova ◽  
...  

The use of basalt fiber as a reinforcing filler is mainly used instead of glass fibers due to its unique properties. Basalt fiber in comparison with glass has a 10-22% greater modulus, higher absolute strength after exposure to 400 °C, superior to glass in alkali and especially acid resistance, approximately identical in water resistance, i.e. close in properties to high-modulus glass fibers. However, it is most often used as a filler for concrete and other building structures. There is much less information about its use as a polymer reinforcing filler. The polymer matrix for creating polymer composite materials is most often epoxy resins, less often polyester. At the same time, there is practically no data on polyurethanes that have a unique combination of high strength indicators with elasticity and hardness, resistance to solvents and aggressive media, abrasion resistance, etc. The use of basalt fiber as a filler that increases the strength characteristics of polyurethanes and gives them specific properties can significantly expand the scope of their application. In this regard, this study attempts to use crushed basalt fiber as a reinforcing filler for polyurethanes. In order to increase the adhesion of the polymer matrix – filler system, an adhesive based on water-based polyurethane dispersion is used. Samples were obtained based on a polyurethane binder filled with basalt fiber in amounts up to 10.0 % by weight, treated with water-polyurethane dispersion with a concentration of 10 to 20 % by weight. The best complex of strength properties is provided by polyurethanes filled with basalt fiber in the amount of 1.0% by weight, treated with 15 % by weight water-based polyurethane dispersion. At the same time, the tensile strength increased by 15% compared to the same filling without processing and by 50% compared to the unfilled analog and amounted to 33.7 MPa. These changes are explained by a more uniform distribution of crushed basalt fiber in the polymer matrix and an increase in the adhesion interaction of fiber-adhesive-polymer matrix due to the biphilicity of the adhesive, as well as the same (polyurethane) nature of the adhesive and the matrix. The developed polymer composite materials have high hydrolytic resistance, as well as resistance to acetone and hexane. At the same time, the greatest degree of swelling did not exceed 0.9 % of the mass.


2001 ◽  
Vol 675 ◽  
Author(s):  
Chengyu Wei ◽  
Kyeongjae Cho ◽  
Deepak Srivastava

ABSTRACTRecently, carbon nanotubes are considered as nanoscale fibers, which can strengthen polymer composite materials. Nanotube-polymer composite materials can be used for micron scale devices with designed mechanical properties and smart polymer coating to protect materials under extreme physical conditions such as microsatellites. To explore these possibilities it is important to develop a detailed atomic scale understanding of the mechanical coupling between polymer matrix and embedded nanotubes. In this work we study the chemical bonding between polymer molecules and carbon nanotubes (CNTs) using molecular dynamics. Study shows that the bonding between polyethylene and a CNT is energetically favorable. Chemical bonds can be formed at multiple sites, which make the mechanical load transfer from the polymer chain to the tube more favorable. We will discuss about the resulting mechanical coupling between the CNTs and polymer matrix to develop efficient nano-composite materials.


Author(s):  
Ch. N. Nguyen ◽  
M. V. Sanyarova ◽  
I. D. Simonov-Emel’yanov

Objectives. The aim is to calculate the composition of dispersion-filled polymer composite materials with different fillers and structures and to highlight differences in the expression of said composition in mass and volume units.Methods. The paper presents the calculation of compositions in mass and volume units for various types of structures comprising dispersion-filled polymer composite materials according to their classification: diluted, low-filled, medium-filled, and highly-filled systems.Results. For calculations, we used fillers with densities ranging from 0.00129 (air) to 22.0 g/cm3 (osmium) and polymer matrices with densities between 0.8 g/cm3 and 1.5 g/cm3 , which represent almost all known fillers and polymer matrices used to create dispersion-filled polymer composite materials. The general dependences of the filler content on the ratio of the filler density to the density of the polymer matrix for dispersion-filled polymer composite materials with different types of dispersed structures are presented. It is shown that to describe structures comprising different types of dispersion-filled polymer composite materials (diluted, low-filled, medium-filled, and highly-filled) it is necessary to use only the volume ratios of components in the calculations. Compositions presented in mass units do not describe the construction of dispersion-filled polymer composite material structures because using the same composition in volume units, different ratios of components can be obtained for different fillers.Conclusions. The dependences of the properties of dispersion-filled polymer composite materials should be represented in the coordinates of the property – content of the dispersed phase only in volume units (vol % or vol. fract.) because the structure determines the properties. Compositions presented in mass units are necessary for receiving batches upon receipt of dispersion-filled polymer composite materials. Formulas are given for calculating and converting dispersion-filled polymer composite material compositions from bulk to mass units, and vice versa.


2016 ◽  
Vol 2 (2) ◽  
pp. 37-42 ◽  
Author(s):  
E. N. Kablov ◽  
L. V. Chursova ◽  
A. N. Babin ◽  
R. R. Mukhametov ◽  
N. N. Panina

Sign in / Sign up

Export Citation Format

Share Document