scholarly journals STUDY OF THE INFLUENCE OF THE CARBON CONTENT IN STEEL ON THE STRUCTURE AND MICROHARDNESS OF THE SURFACE LAYER AFTER ELECTROMECHANICAL PROCESSING WITH IMPACT

Author(s):  
N. G. Dudkina ◽  
V. N. Arisova ◽  
A. E. Birshbaeva

Experimental data of metallographic and x-ray diffraction studies of the surface layer of various grades of steels subjected to electro-mechanical processing (EMO) with dynamic (shock) application of the deformation force are presented. The influence of the carbon content in steel on the formation of the structure, microhardness and depth of hardening of the surface layer obtained in the field of pulsed temperature-force action is considered.

Author(s):  
Ogün Baris Tapar ◽  
Jérémy Epp ◽  
Matthias Steinbacher ◽  
Jens Gibmeier

AbstractAn experimental heat treatment chamber and control system were developed to perform in-situ X-ray diffraction experiments during low-pressure carburizing (LPC) processes. Results from the experimental chamber and industrial furnace were compared, and it was proven that the built system is reliable for LPC experiments. In-situ X-ray diffraction investigations during LPC treatment were conducted at the German Electron Synchrotron Facility in Hamburg Germany. During the boost steps, carbon accumulation and carbide formation was observed at the surface. These accumulation and carbide formation decelerated the further carbon diffusion from atmosphere to the sample. In the early minutes of the diffusion steps, it is observed that cementite content continue to increase although there is no presence of gas. This effect is attributed to the high carbon accumulation at the surface during boost steps which acts as a carbon supply. During quenching, martensite at higher temperature had a lower c/a ratio than later formed ones. This difference is credited to the early transformation of austenite regions having lower carbon content. Also, it was noticed that the final carbon content dissolved in martensite reduced compared to carbon in austenite before quenching. This reduction was attributed to the auto-tempering effect.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


2005 ◽  
Vol 495-497 ◽  
pp. 719-724
Author(s):  
R.E. Bolmaro ◽  
B. Molinas ◽  
E. Sentimenti ◽  
A.L. Fourty

Some ancient metallic art craft, utensils, silverware and weapons are externally undistinguishable from modern ones. Not only the general aspect and shape but also some uses have not changed through the ages. Moreover, when just some small pieces can be recovered from archaeological sites, the samples can not easily be ascribed to any known use and consequently identified. It is clear that mechanical processing has changed along history but frequently only a "microscopic" inspection can distinguish among different techniques. Some bronze samples have been collected from the Quarto d’Altino (Veneto) archaeological area in Italy (paleovenetian culture) and some model samples have been prepared by a modern artisan. The sample textures have been measured by X-ray Diffraction techniques. (111), (200) and (220) pole figures were used to calculate Orientation Distribution Functions and further recalculate pole figures and inverse pole figures. The results were compared with modern forging technology results. Textures are able to discern between hammering ancient techniques for sheet production and modern industrial rolling procedures. However, as it is demonstrated in the present work, forgery becomes difficult to detect if the goldsmith, properly warned, proceeds to erase the texture history with some hammering post-processing. The results of this contribution can offer to the archaeologists the opportunity to take into consideration the texture techniques in order to discuss the origin (culture) of the pieces and the characteristic mechanical process developed by the ancient artisan. Texture can also help the experts when discussing the originality of a certain piece keeping however in mind the cautions indicated in this publication.


Author(s):  
Н.Л. Лунина ◽  
N.L. Lunina

Advances in the methodology of the X-ray diffraction experiments leads to a possibility to register the rays scattered by large isolated biological particles (viruses and individual cells) but not only by crystalline samples. The experiment with an isolated particle provides researchers with the intensities of the scattered rays for the continuous spectrum of scattering vectors. Such experiment gives much more experimental data than an experiment with a crystalline sample where the information is limited to a set of Bragg reflections. This opens up additional opportunities in solving underlying problem of X-ray crystallography, namely, calculating phase values for the scattered waves needed to restore the structure of the object under study. In practice, the original continuous diffraction pattern is sampled, reduced to the values at grid points in the space of scattering vectors (in the reciprocal space). The sampling step determines the amount of the information involved in solving the phase problem and the complexity of the necessary calculations. In this paper, we investigate the effect of the sampling step on the accuracy of the phase problem solution obtained by the method proposed earlier by the authors. It is shown that an expected improvement of the accuracy of the solution with the reducing the sampling step continues even after crossing the Nyquist limit defined as the inverse of the double size of the object under study.


1982 ◽  
Vol 71 (2) ◽  
pp. 603-610 ◽  
Author(s):  
V. G. Kohn ◽  
M. V. Kovalchuk ◽  
E. M. Imamov ◽  
B. G. Zakharov ◽  
E. F. Lobanovioh

1966 ◽  
Vol 10 ◽  
pp. 67-79
Author(s):  
P. Penning

AbstractComplete dynamical solutions for three coupled plane-wave components in crystal structures with inversion symmetry have been found. After reviewing briefly the dynamical solutions for wave fields with two coupled plane-wave components, the results for the three-beam case are discussed in qualitative terms. Attention is paid to singular points and lines on the ω-surface, and to the attenuation of the mode-intensity because of absorption. The most surprising result is that in the case one of the reflections is forbidden (Umweganregung) the absorption is reduced in comparison with the adjoining two-beam cases. Experimental data are in reasonable agreement with the theory. Quantitative data are presented for a few three-beam cases of simultaneous diffraction of Cu Kα. radiation in germanium.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 267 ◽  
Author(s):  
Vincenzo Stagno ◽  
Veronica Stopponi ◽  
Yoshio Kono ◽  
Annalisa D’Arco ◽  
Stefano Lupi ◽  
...  

Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km·yr−1 in the present-day or the Archaean mantle, respectively.


Sign in / Sign up

Export Citation Format

Share Document