The Measurement of Surface-Layer Stresses in a Polycrystalline Glass by Means of X-Ray Diffraction

1972 ◽  
pp. 483-488
Author(s):  
E. W. Kammer ◽  
C. L. Vold
1982 ◽  
Vol 71 (2) ◽  
pp. 603-610 ◽  
Author(s):  
V. G. Kohn ◽  
M. V. Kovalchuk ◽  
E. M. Imamov ◽  
B. G. Zakharov ◽  
E. F. Lobanovioh

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Juying Li ◽  
Qingsong Mei ◽  
Yana Li ◽  
Beihai Wang

Pure copper was subjected to high-pressure surface rolling (HPSR) to obtain a surface gradient layer. Effects of HPSR parameters on the surface microstructure and microhardness of Cu were investigated by using optical microscopy, transmission electronic microscopy, X-ray diffraction, and the microhardness test. The HPSR surface layer has a gradient microstructure consisting of increasingly refined grains with decreasing depth from the treated surface (DFS). The thicknesses of the refined surface layer can be up to ~1.8 mm, and the grain size of the topmost surface is down to ~88 nm, depending on the HPSR parameters including pressure, time, and temperature. Microhardness of HPSR samples increases with decreasing DFS, with a maximum of ~2.4 times that of the undeformed matrix. The present results indicated that HPSR could be an effective method for the production of a mm-thick surface layer on Cu with gradient microstructure and property.


1995 ◽  
Vol 39 ◽  
pp. 331-338
Author(s):  
Yoshihisa Sakaida ◽  
Keisuke Tanaka ◽  
Shintaro Harada

A new method of X-ray stress measurement was proposed to estimate non-destructively the steep residual stress distribution in the surface layer of ground Si3N4. We assumed an exponential decrement of the residual stress near the ground surface, and derived a formula for the lattice strain as a function of sin2Ψ. In the experiments, the diffraction angles were measured on the ground surface for a widest possible range of sin2ѱ using an Ω-goniometer. In order to measure the diffraction angle at very high sin η values, a scintillation counter was located on the -η side and an incident X-ray beam impinged on the ground surface with a very low angle from the +η side using the glancing incidence X-ray diffraction technique. A strong non-linearity was found in the 20-sin2ѱ diagrams especially at very high ѱ -angles. From the analysis of non-linearity, the stress distribution in the surface layer was determined. Tine residual stress took the maximum compression of 2 GPa at a depth of about 0.5 μm from the surface, and then diminished to zero at about 25 μm in depth. In the close vicinity of the ground surface, the compressive residual stress was relieved because of both the surface roughness and microcracking induced during the grinding process.


2016 ◽  
Vol 368 ◽  
pp. 99-102
Author(s):  
Lukáš Zuzánek ◽  
Ondřej Řidký ◽  
Nikolaj Ganev ◽  
Kamil Kolařík

The basic principle of the X-ray diffraction analysis is based on the determination of components of residual stresses. They are determined on the basis of the change in the distance between atomic planes. The method is limited by a relatively small depth in which the X-ray beam penetrates into the analysed materials. For determination of residual stresses in the surface layer the X-ray diffraction and electrolytic polishing has to be combined. The article is deals with the determination of residual stress and real material structure of a laser-welded steel sample with an oxide surface layer. This surface layer is created during the rolling and it prevents the material from its corrosion. Before the X-ray diffraction analysis can be performed, this surface layer has to be removed. This surface layer cannot be removed with the help of electrolytic polishing and, therefore, it has to be removed mechanically. This mechanical procedure creates “technological” residual stress in the surface layer. This additional residual stress is removed by the electrolytic polishing in the depth between 20 and 80 μm. Finally, the real structure and residual stresses can be determined by using the X-ray diffraction techniques.


2005 ◽  
Vol 40 (2) ◽  
pp. 199-209 ◽  
Author(s):  
V Fontanari ◽  
F Frendo ◽  
Th Bortolamedi ◽  
P Scardi

The incremental blind hole-drilling and the X-ray diffraction methods were used to measure the residual stress field introduced by shot peening in aluminium alloy 6082-T5 plates. Two peening treatments were selected to produce different depth extensions and peak values arising from different extents of plastic deformation in the surface layer. The results are discussed considering the various sources of uncertainty; in addition to the measuring technique, the effects of the surface treatment that usually induces a strong plastic deformation in the surface layer resulting in material work hardening and worsening of the surface morphology were considered. The residual stress profiles determined by the two methods showed quite good agreement for the two conditions, as regards the values both of the compressive peak and of the penetration depth. The present results provide mutual confirmation of the effectiveness of the two methods for the study of this class of materials.


1981 ◽  
Vol 212 (1188) ◽  
pp. 299-304 ◽  

X-ray diffraction has been used to measure the preferred orientation of the collagen fibrils, and their angular distribution within the tissue, as a function of depth from the articular surface in patellar cartilage. Measurements have been made at four different sites chosen to represent differing surface curvatures and régimes of wear. The orientation of fibrils in the surface layer allows it to oppose the swelling pressure exerted by the gel of hydrated glycosaminoglycans within the cartilage. An intermediate layer (where a bimodal distribution of fibrils is sometimes resolved) allows the orientation of the fibrils to change, with increasing depth, until they are roughly perpendicular to the articular surface. In this deep layer the fibrils can tie into the underlying calcified tissue so as to firmly anchor the cartilage. In the plane of the surface the fibrils tend to be aligned in the direction of stress caused by motion.


2013 ◽  
Vol 690-693 ◽  
pp. 2120-2125 ◽  
Author(s):  
Li Wen Tang ◽  
Jian Sun ◽  
Jin Zhang ◽  
Xin Bing Ou ◽  
Zhi Ming Zhou

As relatively new structure materials, magnesium and its alloys demonstrated significant potential for applications in many industries. However, magnesium alloys were easy to be corroded which greatly limited their development. AZ31B and AZ91D, two widely used commercial magnesium alloys in various industries, were chosen to be produced nanostructure on the surface layer, called Surface Nanocrystallization (SNC) by High Energy Spot Peening (HESP). The microstructure was characterized by Scan Electronic Microscopy (SEM) and X-ray diffraction (XRD) in this paper. Microhardness and corrosion resistance were measured by microhardness tester and electrochemical measurement system respectively. Experimental results showed that after HESP the grain sizes in the surface layer were obviously reduced into nanoscale; microhardness was greatly increased in the treated surface, about two times as much as that of original and corrosion current density in polarization curve was evidently raised while corrosion potential changed little.


1996 ◽  
Vol 427 ◽  
Author(s):  
A. E Bair ◽  
T. L. Alford ◽  
Z. Atzmon ◽  
S. D. Marcus ◽  
D. C. Doller ◽  
...  

AbstractShallow contact metallization of SiGeC was studied in anticipation of this alloys use in low power applications. It has been shown that in the solid state reaction of Co on (100) Si, that Co is the moving species with proper annealing conditions. This prevents the formation of Kirkendal voiding in certain device structures. This work studies the Co and Ti metallization of SiGeC. A bilayer of 44 nm of Co on 7 nm of Ti, were electron beam evaporated onto epitaxially grown Si0.77Ge0.21C0.02. The samples were rapid thermal processed at 600 and 900 °C for up to two minutes in a nitrogen ambient. The analysis techniques used were Rutherford backscattering spectrometry which included the used of the 4.27 MeV 12C(α,α) 12C resonance reaction, glancing angle x-ray diffraction, During annealing at all temperatures, Co diffused through the Ti layer and formed CoSi. This phase was confirmed by x-ray diffraction. The Co displaced the Ti to the surface. At 600 °C, Ge diffused to the surface layer, while at 900 °C it was rejected back into the original SiGeC. The sample annealed at 600 °C was subsequently annealed at 900 °C. The Ge in the surface layer was rejected from the surface layer, diffused across the CoSi and back into the SiGeC.


Sign in / Sign up

Export Citation Format

Share Document