scholarly journals Floating offshore wind turbines - technology and potential

Author(s):  
Aurel Dan Maimon

"The main purpose of this paper is to present a short review of the actual progress on the floating offshore wind turbines. Floating offshore wind turbines have several advantages: overcoming the depth constraint, floating offshore wind turbines can be installed further offshore and therefore on the one hand have little or no visual impact from the coast, and on the other hand to take advantage of more constant and stronger winds, thus increasing the production efficiency of electricity. They are assembled to port and then transported to site with an ordinary tug, which can also bring them ashore for heavy maintenance or final dismantling. Floating wind power is the future of offshore wind power."

2013 ◽  
Vol 448-453 ◽  
pp. 1871-1874
Author(s):  
Yuan Xie

China has great potential in offshore wind energy and makes an ambitious target for offshore wind power development. Operation and Maintenance (O&M) of offshore wind turbines become more and more important for China wind industry. This study introduces the current offshore wind power projects in China. Donghai Bridge Offshore Demonstration Wind Farm (Donghai Bridge Project) is the first commercial offshore wind power project in China, which was connected to grid in June 2010. O&M of Donghai Bridge Project represent the state-of-the-art of China offshore O&M. During the past two and half years, O&M of Donghai Bridge Project has gone through three phases and stepped into a steady stage. Its believed that analysis of O&M of Donghai Bridge Project is very helpful for Chinas offshore wind power in the future.


2015 ◽  
Vol 1 (2) ◽  
pp. 159
Author(s):  
Woojong Jung

The purpose of this study is to analyze the economic spillover effects and environmental impact of building offshore wind turbines on a local economy in Japan. Japan is facing a great turning point in its energy policy in the wake of the Great East Japan Earthquake, further increasing the importance of renewable energy. The offshore wind turbines experiment in Kitakyushu City is anticipated to showcase the potential of offshore wind power in Japan for the future and dynamize the local economy. As such, in this study, an economic and environmental impact assessment by Input–Output (I-O) analysis was conducted for the construction of the offshore wind turbines. The results show that building one hundred 3MW offshore wind turbine units will increase the induced production value by approximately 205.2 billion yen, equivalent to roughly 2.7% of Kitakyushu City’s total production value. Additionally, it is anticipated to create approximately 14 500 jobs. In terms of environmental impact, the increase in production is estimated to increase CO2 emissions by nearly 340 000 tonnes (an increase of approximately 2.1%). Accordingly, the environmental impact of building offshore wind turbines in Kitakyushu City is smaller than the economic impact, meaning that a sustainable between the economy and the environment can be found by the diffusion of renewable energy.


2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 475
Author(s):  
Payam Aboutalebi ◽  
Fares M’zoughi ◽  
Izaskun Garrido ◽  
Aitor J. Garrido

Undesired motions in Floating Offshore Wind Turbines (FOWT) lead to reduction of system efficiency, the system’s lifespan, wind and wave energy mitigation and increment of stress on the system and maintenance costs. In this article, a new barge platform structure for a FOWT has been proposed with the objective of reducing these undesired platform motions. The newly proposed barge structure aims to reduce the tower displacements and platform’s oscillations, particularly in rotational movements. This is achieved by installing Oscillating Water Columns (OWC) within the barge to oppose the oscillatory motion of the waves. Response Amplitude Operator (RAO) is used to predict the motions of the system exposed to different wave frequencies. From the RAOs analysis, the system’s performance has been evaluated for representative regular wave periods. Simulations using numerical tools show the positive impact of the added OWCs on the system’s stability. The results prove that the proposed platform presents better performance by decreasing the oscillations for the given range of wave frequencies, compared to the traditional barge platform.


2021 ◽  
Author(s):  
Athul K. Sundarrajan ◽  
Yong Hoon Lee ◽  
James T. Allison ◽  
Daniel R. Herber

Abstract This paper discusses a framework to design elements of the plant and control systems for floating offshore wind turbines (FOWTs) in an integrated manner using linear parameter-varying models. Multiple linearized models derived from high-fidelity software are used to model the system in different operating regions characterized by the incoming wind speed. The combined model is then used to generate open-loop optimal control trajectories as part of a nested control co-design strategy that explores the system’s stability and power production in the context of crucial plant and control design decisions. A cost model is developed for the FOWT system, and the effect of plant decisions and subsequent power and stability response of the FOWT is quantified in terms of the levelized cost of energy (LCOE) for that system. The results show that the stability constraints and the plant design decisions affect the turbine’s power and, subsequently, LCOE of the system. The results indicate that a lighter plant in terms of mass can produce the same power for a lower LCOE while still satisfying the constraints.


2021 ◽  
Author(s):  
Peng Chen ◽  
Changhong Hu ◽  
Zhiqiang Hu

Abstract Artificial intelligence (AI) brings a new solution to overcome the challenges of Floating offshore wind turbines (FOWTs) to better predict the dynamic responses with intelligent strategies. A new AI-based software-in-the-loop method, named SADA is introduced in this paper for the prediction of dynamic responses of FOWTs, which is proposed based on an in-house programme DARwind. DARwind is a coupled aero-hydro-servo-elastic in-house program for FOWTs, and a reinforcement learning method with exhaust algorithm and deep deterministic policy gradient (DDPG) are embedded in DARwind as an AI module. Firstly, the methodology is introduced with the selection of Key Disciplinary Parameters (KDPs). Secondly, Brute-force Method and DDPG algorithms are adopted to changes the KDPs’ values according to the feedback of 6DOF motions of Hywind Spar-type platform through comparing the DARwind simulation results and those of basin experimental data. Therefore, many other dynamic responses that cannot be measured in basin experiment can be predicted in good accuracy with SADA method. Finally, the case study of SADA method was conducted and the results demonstrated that the mean values of the platform’s motions can be predicted with higher accuracy. This proposed SADA method takes advantage of numerical-experimental method, basin experimental data and the machine learning technology, which brings a new and promising solution for overcoming the handicap impeding direct use of conventional basin experimental way to analyze FOWT’s dynamic responses during the design phase.


Sign in / Sign up

Export Citation Format

Share Document