scholarly journals INFLUENCE OF ELEMENT SIZE IN A CASE OF IMPACT SIMULATION

2021 ◽  
Vol 10 (4) ◽  
pp. 24-29
Author(s):  
Viorel TOTOLICI RUSU ◽  
George Ghiocel OJOC ◽  
Catalin PIRVU ◽  
Lorena DELEANU

This paper presents an analysis of data resulting from the same material constitutive model, based on experimental data and model developed by Johnson and Cook. The same case of impacting a cylindrical body on a perfectly rigid target was run with four different mesh size (2 mm, 1 mm, 0.5 mm and 0.25 mm). Here, the comparing criterion was the maximum value of von Mises stress and the authors pointed out that the finest mesh here presented is closer to reality. Depending on the case application the engineers could adopt a finer or coarse mesh, but not so coarse to denaturate the reality of body deformation and failure. How to decide? Having performant computer resources (hardware and software) and running several mesh in order to notice the convergence of one parameter or, more reliable, a set of criteria that could include qualitative resemblance with actual bodies as concerning failure and deformation, experimental dat on strain, yield and failure of the involved materials, values of stress and strain, at the same time moments. From this study the following conclusions were formulated: finer mesh presents a earlier failure in time and calculated a higher stress for these moment.

2020 ◽  
Vol 12 (4) ◽  
pp. 145-154
Author(s):  
George-Ghiocel OJOC ◽  
Viorel Totolici RUS ◽  
Christian POPESCU ◽  
Catalin PIRVU ◽  
Lorena DELEANU

This paper presents an analysis of two cases, simulating the impact of a cylindical projectile on a perfectly rigid plate. One case is run without friction, the second one is run taking into account a friction coeficient between the plate and the projectile. The authors used for the projectile the same material constitutive model for both cases, based on experimental data and model developed by Johnson and Cook. Here, the comparing criteria were the maximum value of von Mises stress, the velocity and acceleration of the central point on the opposite face to the contact face of the projectile. Introducing friction, the simulation is more realistic. Taking into account friction, the projectile is less deformed and there was no edge breakage, at the same time moment.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Saddam Hussein Raheemah ◽  
Kareem Idan Fadheel ◽  
Qais Hussein Hassan ◽  
Ashham Mohammed Aned ◽  
Alaa Abdulazeez Turki Al-Taie ◽  
...  

The present study aims to investigate crack presence in a rigid steel beam so that it can be considered in structural design. A finite element method (FEM) had been used with the Ansys 16.1 software to simulate the whole steel body with three different forces and moments with a magnitude force subjected at the free end of the beam. The steel rod had been considered as simple cantilever to be modelled by the software. Von Mises stress had been considered in the simulation process where the maximum value of stress due to applied load and moment was 1.9 MPa. Total deformation of the whole body had also been considered to instigate the maximum deformation (4.3mm) due to applied loads and moments. Furthermore, MATLAB and through fuzzy logic had been used to assist in the investigation of cracks. Both approaches had been governed by the Euler-Bernoulli theory for free vibration of motion equations. The other aim of this study is to evaluate results received from the Ansys with MATLAB for the same boundary conditions as the case.


2010 ◽  
Vol 2 (1) ◽  
Author(s):  
Sugiarmadji ◽  
Setiadi

Structural strength analysis on Motor Rocket-168 fins was carried out to determine static stresses due to aerodynamic loadings. Here, 90 mm of the root chord area from leading edge was unclamp (free). The analysis results showed the maximum value of von Mises stress is Q von mises = 42.40 MPa. For 90 mm condition un clamp (free) we obtained the safety factor of the material for fins structures made of Al-Plate is SF=3.39. For 67.5 mm of 90 mm root chord area constrainted at 12456 directions, it was found Qvm equal 11,26 MPa and has higher safety factor. Eigenvalues and eigenvectors of the fins structures. The results showed that the eigenvalues of the fin structures are Q1 equal 198,47 Hz, Q2 equal 616,34 Hz, Q3 equal 1080,97 Hz, Q4 equal 1704,33 Hz, Q5 equal 2386,82 Hz, dan Q6 equal 2770,94 Hz.


2019 ◽  
Vol 9 (16) ◽  
pp. 3385 ◽  
Author(s):  
José Rojas-Sola ◽  
Eduardo De la Morena-De la Fuente

This article analyzes the ‘Hay inclined plane’ designed by the English engineer and entrepreneur William Reynolds and put into operation in 1792 to facilitate the transport of vessels between channels at different levels using an inclined plane. To this end, a study of computer-aided engineering (CAE) was carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite-element method (FEM) of the 3D model of the invention under real operating conditions. The results obtained after subjecting the mechanism to the two most unfavorable situations (blockage situation of the inertia flywheel and emergency braking situation) indicate that, with the exception of the braking bar, the rest of the assembly is perfectly designed and dimensioned. In particular, for the blockage situation, the point with the greatest stress is at the junction between the inertia flywheel and the axle to which it is attached, the maximum value of von Mises stress being at that point (186.9 MPa) lower than the elastic limit of the cast iron. Also, at this point the deformation is very low (0.13% of its length), as well as the maximum displacement that takes place in the inertia flywheel itself (22.98 mm), and the lowest safety factor has a value of 3.51 (located on the wooden shaft support), which indicates that the mechanism is clearly oversized. On the other hand, the emergency braking situation, which is technically impossible with a manual operation, indicates that the braking bar supports a maximum von Mises stress of 1025 MPa, above the elastic limit of the material, so it would break. However, other than that element, the rest of the elements have lower stresses, with a maximum value of 390.7 MPa, and with safety factors higher than 1.7, which indicates that the mechanism was well dimensioned.


Author(s):  
Jessica Gissella Maradey Lázaro ◽  
Helio Sneyder Esteban Villegas ◽  
Braulio José Blanco Caballero

The chassis is one of the main components of the vehicle, which provides not only support and stiffness but also gives the vehicle its shape. Its design is a challenge for the mechanical engineer: to achieve an optimum resistance-weight ratio which can ensure the safety of the pilot. To optimize its design, engineers can rely on the Finite Element Analysis (FEA) an ideal method to predict the behavior of the chassis to the different loads (Mechanical Effort, fatigue, movement) and effects (Vibration, heat, fluid flow, transfer of heat) given in real environments. This analysis is able to describe if a product may break, wear out or, otherwise, it will work as expected. Additionally, it allows the variation of the geometry and materials used so that the most suitable one can be selected for the application in study. This article aims to show the preliminary design of the chassis (Simplified 3D model using CAD) taking into account the rules of the SAE competition and its optimization by using the FEA analysis and also taking into account its geometry. Static load analysis will start by selecting the appropriate mesh size and having as criteria that Von Mises stress should be less than the yield point of the selected material. Likewise, the deformation of the members that make up the chassis should not put at risk the safety of the pilot. Moreover, a Modal Analysis of the chassis to verify the natural frequencies and vibration modes is also made. The result of this research provides a design approach for the validation (theory vs simulation) and optimization of the chassis to ensure better performance as well as to facilitate the manufacture of its parts and assembly.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Muhammad Amin Putro ◽  
Prantasi Harmi Tjahjanti

This study aims to design the water tube for pure water namely a set of processing tools used to place the water using Autodesk Inventor 2016 software. The data which inputted is stainless steel SS 304 and SS 201, because both of them have the Cr and Ni elements, which will be used as tubes and the top and bottom caps. The results of running data are von mises stress, displacement, and safety factor. The output data were used to obtain the most efficient material and thickness variations between 1.5mm, 2mm, and 3mm. The most suitable and efficient result shown at 3mm thick SS 304 with the maximum value of von mises stress is 14.62 MPa, a maximum displacement of 0.013mm, and a safety factor of 15.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Zhang Ying ◽  
Chen Xiping ◽  
Sun Guangai ◽  
Lu Yuping ◽  
Gong Jian ◽  
...  

In order to optimize the structure of anvils, finite element method is used to simulate two kinds of structures, one of which has a support ring but the other one does not. According to the simulated results, it is found that the maximum value of pressure appears at the center of culet when the bevelled angle is about 20°. Comparing the results of these two kinds of structures, we find that the efficiency of pressure transformation for the structure without support ring is larger than that for the structure with support ring. Considering the effect of von Mises stress, two kinds of tungsten carbide opposite anvils have been manufactured with bevelled angle of 10°. The experimental results for these two anvils are in good agreement with the simulation.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 757
Author(s):  
Tianyi Su ◽  
Wenqing Zhang ◽  
Zhijun Zhang ◽  
Xiaowei Wang ◽  
Shiwei Zhang

A 2D axi-symmetric theoretical model of dielectric porous media in intermittent microwave (IMW) thermal process was developed, and the electromagnetic energy, multiphase transport, phase change, large deformation, and glass transition were taken into consideration. From the simulation results, the mass was mainly carried by the liquid water, and the heat was mainly carried by liquid water and solid. The diffusion was the dominant mechanism of the mass transport during the whole process, whereas for the heat transport, the convection dominated the heat transport near the surface areas during the heating stage. The von Mises stress reached local maxima at different locations at different stages, and all were lower than the fracture stress. A material treated by a longer intermittent cycle length with the same pulse ratio (PR) tended to trigger the phenomena of overheat and fracture due to the more intense fluctuation of moisture content, temperature, deformation, and von Mises stress. The model can be extended to simulate the intermittent radio frequency (IRF) process on the basis of which one can select a suitable energy source for a specific process.


Sign in / Sign up

Export Citation Format

Share Document