The Influence of Loading Position in A Priori High Stress Detection using Mode Superposition

2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.

Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Mostafa Omran Hussein ◽  
Mohammed Suliman Alruthea

Abstract Objective The purpose of this study was to compare methods used for calculating heterogeneous patient-specific bone properties used in finite element analysis (FEA), in the field of implant dentistry, with the method based on homogenous bone properties. Materials and Methods In this study, three-dimensional (3D) computed tomography data of an edentulous patient were processed to create a finite element model, and five identical 3D implant models were created and distributed throughout the dental arch. Based on the calculation methods used for bone material assignment, four groups—groups I to IV—were defined. Groups I to III relied on heterogeneous bone property assignment based on different equations, whereas group IV relied on homogenous bone properties. Finally, 150 N vertical and 60-degree-inclined forces were applied at the top of the implant abutments to calculate the von Mises stress and strain. Results Groups I and II presented the highest stress and strain values, respectively. Based on the implant location, differences were observed between the stress values of group I, II, and III compared with group IV; however, no clear order was noted. Accordingly, variable von Mises stress and strain reactions at the bone–implant interface were observed among the heterogeneous bone property groups when compared with the homogenous property group results at the same implant positions. Conclusion Although the use of heterogeneous bone properties as material assignments in FEA studies seem promising for patient-specific analysis, the variations between their results raise doubts about their reliability. The results were influenced by implants’ locations leading to misleading clinical simulations.


Author(s):  
Osezua Obehi Ibhadode ◽  
Ishaya Musa Dagwa ◽  
Akii Okonigbon Akhaehomen Ibhadode

Calibration curves of a multi-component dynamometer is of essence in machining operations in a lathe machine as they serve to provide values of force and stress components for cutting tool development and optimization. In this study, finite element analysis has been used to obtain the deflection and stress response of a two component cutting tool lathe dynamometer, for turning operation, when the cutting tool is subjected to cutting and thrust forces from 98.1N to 686.7N (10 to 70kg-wts), at intervals of 98.1N(10kg-wt). By obtaining the governing equation, modeling the dynamometer assembly, defining boundary conditions, generating the assembly mesh, and simulating in Inventor Professional; horizontal and vertical components of deflection by the dynamometer were read off for three different loading scenarios. For these three loading scenarios, calibration plots by experiment compared with plots obtained from simulation by finite element analysis gave accuracies of 79%, 95%, 84% and 36%, 57%, 63% for vertical and horizontal deflections respectively. Also, plots of horizontal and vertical components of Von Mises stress against applied forces were obtained.


Author(s):  
B Ashby ◽  
C Bortolozo ◽  
A Lukyanov ◽  
T Pryer

Summary In this article, we present a goal-oriented adaptive finite element method for a class of subsurface flow problems in porous media, which exhibit seepage faces. We focus on a representative case of the steady state flows governed by a nonlinear Darcy–Buckingham law with physical constraints on subsurface-atmosphere boundaries. This leads to the formulation of the problem as a variational inequality. The solutions to this problem are investigated using an adaptive finite element method based on a dual-weighted a posteriori error estimate, derived with the aim of reducing error in a specific target quantity. The quantity of interest is chosen as volumetric water flux across the seepage face, and therefore depends on an a priori unknown free boundary. We apply our method to challenging numerical examples as well as specific case studies, from which this research originates, illustrating the major difficulties that arise in practical situations. We summarise extensive numerical results that clearly demonstrate the designed method produces rapid error reduction measured against the number of degrees of freedom.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Author(s):  
George Valsamos ◽  
Christos Theodosiou ◽  
Sotirios Natsiavas

Dynamic response related to fatigue prediction of an urban bus is investigated. First, a quite complete model subjected to road excitation is employed in order to extract sufficiently reliable and accurate information in a fast way. The bus model is set up by applying the finite element method, resulting to an excessive number of degrees of freedom. In addition, the bus suspension units involve nonlinear characterstics. A step towards alleviating this difficulty is the application of an appropriate coordinate transformation, causing a drastic reduction in the dimension of the final set of the equations of motion. This allows the application of a systematic numerical methodology leading to direct determination of periodic steady state response of nonlinear models subjected to periodic excitation. Next, typical results were obtained for excitation resulting from selected urban road profiles. These profiles have either a known form or known statistical properties, expressed by an appropriate spatial power spectral density function. In all cases examined, the emphasis was put on investigating ride response. The main attention was focused on identifying areas of the bus suspension and frame subsystems where high stress levels are developed. This information is based on the idea of a nonlinear transfer function and provides the basis for applying suitable criteria in order to perform analyses leading to prediction of fatigue failure.


2020 ◽  
Vol 5 (10) ◽  
pp. 1288-1293
Author(s):  
Panagiotis J. Charitidis

The present study concerns with the finite element investigation of balanced aluminium single lap joints subjected to tensile loading. Epoxy adhesives were used for bonding having different nanoparticles rate in the epoxy resin (0.5, 1.0, 1.5 and to 2 wt. %, respectively). Two-dimensional (2D) finite element analysis has been employed to determine the peeling stress, von Mises stress, and the shear strain distribution across the midplane of the joints. The results mainly prove that the nanoparticles rate in the adhesive material directly affects the joint tensile strength. Nanocomposite adhesives present a higher failure load than that of neat adhesives. Furthermore, nanocomposite adhesive with 0.5 wt. % of nanoparticles generated strengths (shear and peeling strengths) more than neat adhesives, after which decreased by further addition of the nanoparticles.


Author(s):  
Lasinta Ari Nendra Wibawa

Crane is one of the heavy equipment that is widely used in the industry. The crane functions as a tool for lifting heavy loads and moving them from one place to another vertically and horizontally. In the LAPAN Garut office, it is used for the rocket assembly process. The study investigates the design and analysis of von Mises stress of crane structure with a capacity of 10 tons using mild steel material. The investigation was carried out numerically using Autodesk Inventor Professional 2017. The simulation results showed the Crane structure had a von Mises stress, deformation, mass, and safety factor respectively 63.73 MPa; 2,173 mm; 1.508,53 kg; and 3.25.Keywords: autodesk inventor 2017; finite element method; mild steel; stress analysis; von Mises stressABSTRAKCrane merupakan salah satu alat berat yang banyak digunakan dalam suatu industri. Crane berfungsi sebagai alat untuk mengangkat beban berat dan memindahkannya dari satu tempat ke tempat lain secara vertikal maupun horisontal. Di LAPAN Garut, Crane digunakan untuk proses perakitan roket. Penelitian ini meneliti tentang perancangan dan analisis tegangan von Mises struktur Crane dengan kapasitas 10 Ton menggunakan material mild steel. Analisis dilakukan secara numerik dengan menggunakan perangkat lunak Autodesk Inventor Professional 2017. Hasil simulasi menunjukkan struktur Crane memiliki tegangan von Mises, deformasi, massa, dan factor keamanan berturut-turut sebesar 63,73 MPa; 2,173 mm; 1.508,53 kg; dan 3,25.


Sign in / Sign up

Export Citation Format

Share Document