scholarly journals Sistem kendali posisi motor DC menggunakan state feedback controller dan real-time operating system

Author(s):  
Martin Martin

Motor DC merupakan sistem penggerak yang paling banyak digunakan di bidang industri, otomasi, robotika, ataupun lainnya. Penggunaan sistem kendali banyak diterapkan untuk pengaturan pergerakan kecepatan ataupun posisi dari motor DC. Pada penelitian ini, state feedback controller dan penambahan kendali integral dengan estimator digunakan untuk mengendalikan posisi motor DC. Sistem dibuat berbasis real-time operarting system (RTOS) untuk pembacaan sensor, perhitungan matematis kendali, dan pengiriman sinyal pulse width modulation (PWM). Pengendalian dilakukan pada motor DC Quanser yang terhubung dengan Arduino Mega 2560 untuk membaca sensor encoder dan menampilkan data pengujian. Hasil pengujian menunjukkan bahwa state feedback controller dapat mengendalikan posisi motor DC dengan nilai penguat K sebesar 2,66 dan 115,37, nilai penguat N_bar sebesar 0,49 dan nilai estimator sebesar 7,75 dan 0,26. Penggunaan RTOS sebagai inti pemrograman dapat menyelesaikan permasalahan dalam pengerjaan task-task­ seperti pembacaan sensor, perhitungan parameter kendali, dan pengiriman sinyal kendali tanpa terjadi error selama pengujian sistem. Hasil analisa menunjukan keluaran sistem kendali posisi memiliki nilai overshoot sebesar 2,63% pada pengujian pertama dan 2,66% pada pengujian kedua.

2013 ◽  
Vol 7 (2) ◽  
pp. 19-25
Author(s):  
B. Arundhati ◽  
◽  
K. Alice Mary ◽  
Surya Kalavathi M ◽  
K. Shankar ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Firas Turki ◽  
Hassène Gritli ◽  
Safya Belghith

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.


Author(s):  
Qinghui Du

The problem of adaptive state-feedback stabilization of stochastic nonholonomic systems with an unknown time-varying delay and perturbations is studied in this paper. Without imposing any assumptions on the time-varying delay, an adaptive state-feedback controller is skillfully designed by using the input-state scaling technique and an adaptive backstepping control approach. Then, by adopting the switching strategy to eliminate the phenomenon of uncontrollability, the proposed adaptive state-feedback controller can guarantee that the closed-loop system has an almost surely unique solution for any initial state, and the equilibrium of interest is globally asymptotically stable in probability. Finally, the simulation example shows the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document