scholarly journals PERFORMANCE OPTIMIZATION OF EXISTING BOILERS AT SHAKARGANJ LLIMITED, JHANG

2019 ◽  
Vol 34 (1) ◽  
Author(s):  
Muhammad Sharif Tahir ◽  
Muhammad Waseem Irshad

There are numerous well-documented phenomena that plague the efficient operation of bagasse boilers. Key Parameters that influence boiler combustion and operation are studied with the aid of combustion and flue gas analyzer. Combustion stability and efficiency is linked to various parameters such as fuel moisture and air temperatures supplied to the boiler and are investigated in this paper as part of a case study.  The paper highlights number of modern developments that have been implemented at Shakarganj Limited, Jhang to optimize the existing boiler design to enhance the Boiler capacity from 65 tph to 80 tph. Along with that impact of various devices on performance improvement of boiler has been shown with experimental data for comprehensive evaluation of boiler operation and combustion efficiency. Results of suitable measures after installation of low cost retrofits to reduce losses including combustion instabilities, unburnt fuel, moisture in fuel and deposition of ash on tubes are also part of the paper.

Author(s):  
L. A. Diehl ◽  
J. A. Biaglow

Emissions and performance characteristics were determined for two full-annulus swirl-can modular combustors operated to near-stoichiometric fuel air ratios. The purposes of the tests were to obtain stoichiometric data at inlet-air temperatures up to 894 K and to determine the effect of module number by investigating 120 and 72 module swirl-can combustors. The maximum average exit temperature obtained with the 120-module swirl-can combustor was 2465 K with a combustion efficiency of 95 percent at an inlet-air temperature of 894 K. The 72-module swirl-can combustor reached a maximum average exit temperature of 2306 K with a combustion efficiency of 92 percent at an inlet-air temperature of 894 K. At a constant inlet air temperature, maximum oxides of nitrogen emission index values occurred at a fuel-air ratio of 0.037 for the 72-module design and 0.044 for the 120-module design. The combustor average exit temperature and combustion efficiency were calculated from emissions measurements. The measured emissions included carbon monoxide, unburned hydrocarbons, oxides of nitrogen, and smoke.


Author(s):  
Derek Johnson ◽  
Mahdi Darzi ◽  
Chris Ulishney ◽  
Mehar Bade ◽  
Nima Zamani

Two-stroke engines are often used for their low cost, simplicity, and power density. However, these engines suffer efficiency penalties due to fuel short-circuiting. Increasing power density has previously been an area of focus for performance two-stroke engines — such as in dirt bikes. Smaller-displacement engines have also been used to power remote controlled cars, boats, and aircraft. These engines typically rely on gasoline or higher-octane liquid fuels. However, natural gas is an inherently knock-resistant fuel and small natural gas engines and generators could see increased market penetration. Power generators typically operate at a fixed frequency with varied load, which can take advantage of intake and exhaust system tuning. In addition, stationary engines may not be subject to size restrictions of optimal intake and exhaust systems. This paper examines methods to improve combustion stability, efficiency, and power density of a 29cc air-cooled two-stroke engine converted to operate on natural gas. Initial conversion showed significant penalties on delivery ratio, which lowered power density and efficiency. To overcome these issues a tuned intake pipe, two exhaust resonators, and a combustion dome were designed and tested. The engine was operated at 5400 RPM and fueling was adjusted to yield maximum brake-torque (MBT). All tests were conducted under wide-open throttle conditions. The intake and exhaust systems were designed based on Helmholtz resonance theory and empirical data. The engine utilized a two-piece cylinder head with removable combustion dome. The combustion dome was modified for optimal compression ratio while decreasing squish area and volume. With all designs incorporated, power increased from 0.22 kW to 1.07 kW — a factor of 4.86. Efficiency also increased from 7% to 12%. In addition to these performance gains, the coefficient of variation (COV) of indicated mean effective pressure (IMEP) decreased from just above 11% to less than 4%.


Author(s):  
Yongho Kim ◽  
Sy M. Stange ◽  
Louis A. Rosocha ◽  
Vincent W. Ferreri

AbstractNon-thermal plasmas have recently found novel applications in improving fuel combustion. Typical electron temperatures in such plasmas are of order a few electron volts. Such electrons are sufficient to break down fuel molecules and to produce free radicals which may significantly affect combustion efficiency. In this work, we use a dielectric barrier discharge (DBD) to activate propane (C3H8) fuel before it is mixed with air and ignited. The use of activated propane enables us to operate combustion in very lean-burn conditions; for 0.2 lpm propane, air flow was 38 lpm, compared with an air flow of 26 lpm in the absence of a plasma. A residual gas analyzer (RGA) measures the decomposition products of the propane discharge, indicating that atomic and molecular hydrogen are produced in the plasma and that their concentrations depend on the DBD energy density. Based on the observations discussed in this work, we have shown that by activating propane, the DBD increases combustion stability.


2021 ◽  
Author(s):  
Meng Wang ◽  
Zepeng Lv ◽  
Xuewei Lv ◽  
Qian Li ◽  
Jie Dang

Abstract Density functional theory (DFT) calculation indicators (ΔG, densities of state, D-band and bader charge) are commonly used to predict and analyze the hydrogen evolution reaction (HER) activity of catalysts, and most studies discuss only one or few of these indicators’ impact on catalysis, but still no report has comprehensively evaluated the influence of all these indicators on catalytic performance. Herein, foreseen by comprehensive consideration first, we report transition metal doped Ni3N nanosheets combined on Ni foam for utra-efficient alkaline hydrogen evolution. For dual transition metals doped Ni3N, Co,V-Ni3N exhibits remarkable HER performance with a significantly low overpotential of only 10 mV in alkaline electrolyte and 41 mV in alkaline seawater electrolyte at 10 mA cm− 2; while for single transition metal doped Ni3N, V-Ni3N exhibits the best performance with an overpotential of 15 mV and a Tafel slope of 37 mV dec− 1. Our work highlights the importance of comprehensive evaluation of DFT calculation indexes, and opens up a new method for the rational design of efficient and low-cost catalysts.


2012 ◽  
Vol 263-266 ◽  
pp. 1004-1007 ◽  
Author(s):  
Li Ying Liu ◽  
Yan Huang ◽  
Chun Yu Liu ◽  
Xin Ming Zhang ◽  
Jiu Ru Yang

Optical fiber Raman amplifier (OFRA) with wide and flat gain bandwidth has been widely applied in the fields of optical communication, sensing and measurement. However, the performance optimization is always one of the hot topics in the study of OFRA, because its output characteristics are hardly dependent to some key designing parameters. In this paper, to overcome the problems above, we adopt a spectrum analysis based method to study the output performance of an OFRA system with backward pumping. By simulating the operation of the OFRA system, its output characteristics are first showed easily, with the advantages of real time, low cost, and low complexity. Further, according to the numerical results obtained, the optimal parameters of an OFRA system are determinate, and the performance in terms of output power, signal noise ratio, and the level of gain flatness is improved and optimized obviously.


Author(s):  
P. V. Narendra Kumar ◽  
Ch. Chengaiah ◽  
P. Rajesh ◽  
Francis H. Shajin

In this paper presents a hybrid method for optimization process of combustion in power plant boiler. ANSSA scheme will be joint implementation of Artificial Neural Network (ANN) as well as Salp Swarm Optimization Algorithm (SSA) known ANNSSA. Here, ANN training process will be enhanced by using the SSA calculating. The optimization of economic parameters reduces excess air level and performs combustion efficiency at boiler system. Due to the operation of service boiler, oxygen content of flue gases is one of the significant factors which influence the efficiency of boiler, and influence each other to other thermal parameters of economic like temperature of flue gases combustion, unburned carbon at fly ash slag and consumption of coal power supply. The combustion performance denotes a saving at operating costs of boiler. ANNSSA method evolved for process of combustion to enhance the implementation and efficiency of the power plant boiler. At that time, ANNSSA technique is implemented at MATLAB/Simulink work platform as well as implementation is evaluated using existing techniques.


2010 ◽  
Vol 10 (14) ◽  
pp. 6617-6625 ◽  
Author(s):  
L.-W. A. Chen ◽  
P. Verburg ◽  
A. Shackelford ◽  
D. Zhu ◽  
R. Susfalk ◽  
...  

Abstract. Carbon (C) and nitrogen (N) released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO) and ammonia (NH3). Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3) were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H)/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.


2015 ◽  
Vol 713-715 ◽  
pp. 2981-2984
Author(s):  
Xi Yu Lin ◽  
Guo Min Fu ◽  
Wei Lv ◽  
Chao Cheng

<p>This paper introduces the structure and working principle of biomass fuel hot stove, and analyses the existing problems in the combustion process. Simultaneously, the paper proposes the optimization about the wall high temperature of the hot stove, which is the main issue in the hot stove.</p> <p>Biomass resources in China is very abundant.only the amount of resources of agricultural wastes (such as straw) each year is equivalent to 3.08 tons of standard coal. The biomass briquette is compressed with loose, amorphous materials, such as straw, rice husk, sawdust, wood chips, into a shaped, denser solid fuel with the method of mechanical pressure. It has the advantages of small size, high density, easy storage and transportation, combustion stability, long cycle, high combustion efficiency, low contaminant levels in ash and flue gas. It provides an effective way to solve the energy shortage in rural areas and straw burning problem fundamentally[1].</p>


2014 ◽  
Vol 1030-1032 ◽  
pp. 1760-1763
Author(s):  
Yan Xia Li ◽  
Zheng Long Shao ◽  
Nai Jia Liu ◽  
Yu Peng

With the development of information, the number of applications is growing. The questions of cost, support, risk and safety also arise. In order to realize low cost and high efficiency, we have studied the efficient operation technologies, including application isolation technology, virtualization technology, performance evaluation technology, etc. Using these technologies, we have realized efficient integration of operation resources, comprehensive optimization of application performance, and high satisfaction of end users.


Sign in / Sign up

Export Citation Format

Share Document