OPTIMISATION OF SAND CASTING PROCESS FOR IMPELLER USING TAGUCHI METHODOLOGY

2020 ◽  
Vol XVII (2) ◽  
pp. 23-33
Author(s):  
Faisal Hafeez ◽  
Salman Hussain ◽  
Wasim Ahmad ◽  
Mirza Jahanzaib

This paper presents the study to investigate the effects of binder ratio, in-gate length and pouring height on hardness, surface roughness and casting defects of sand casting process. Taguchi methodology with L9 orthogonal array was employed to design the experimentation. Sand casting of six blade impeller using A356 alloy was performed and empirical models for all the above response measures were formulated. Confirmatory tests and analysis of variance results confirmed the accuracy of the model. Binder ratio was found to be the most significant parameter affecting casting surface defects and surface roughness. This was followed by pouring height and in-gate length.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 598 ◽  
Author(s):  
Kashif Ishfaq ◽  
Muhammad Asad Ali ◽  
Naveed Ahmad ◽  
Sadaf Zahoor ◽  
Abdulrahman M. Al-Ahmari ◽  
...  

Sand-casting is a well established primary process for manufacturing various parts of A356 alloy. However, the quality of the casting is adversely affected by the change in the magnitude of the control variables. For instance, a larger magnitude of pouring velocity induces a drop effect and a lower velocity increases the likelihood of cold-shut and mis-run types of defects. Similarly, a high pouring temperature causes the formation of hot tears, whereas a low temperature is a source of premature solidification. Likewise, a higher moisture content yields microcracks (due to gas shrinkages) in the casting and a lower moisture content results in the poor strength of the mold. Therefore, the appropriate selection of control variables is essential to ensure quality manufactured products. The empirical relations could provide valuable guidance in this regard. Additionally, although the casting process was optimized for A356 alloy, it was mostly done for a single response. Therefore, this paper aimed to formulate empirical relations for the contradictory responses, i.e., hardness, ultimate tensile strength and surface roughness, using the response surface methodology. The experimental results were comprehensively analyzed using statistical and scanning electron microscopic analyses. Optimized parameters were proposed and validated to achieve castings with high hardness (84.5 HB) and strength (153.5 MPa) with minimum roughness (5.8 µm).


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 252
Author(s):  
Arun Prabhakar ◽  
Michail Papanikolaou ◽  
Konstantinos Salonitis ◽  
Mark Jolly

Sand casting of lead sheet is a traditional manufacturing process used up to the present due to the special features of sand cast sheet such as their attractive sheen. Similarly to any casting process, sand casting of lead sheet suffers from the presence of surface defects. In this study, a surface defect type, hereby referred to as ‘grooves’, has been investigated. The focus has been laid on the identification of the main factors affecting defect formation in this process. Based on a set of screening experiments performed using Scanning Electron Microscopy (SEM) as well as the existing literature, a number of factors affecting the formation of such defects was identified and their corresponding significance was estimated using the Analysis of Variance (ANOVA) technique. The obtained results suggest that the most significant factor affecting defect formation in sand casting of lead sheet is the composition of the moulding mixture. Defect formation was also proven to be dependent on the sand grain fineness, the quality of the melt and some of the interactions between the aforementioned process parameters. Finally, an optimal set of process parameters leading to the minimisation of surface defects was identified.


2020 ◽  
Vol 7 (1) ◽  
pp. 457-478 ◽  
Author(s):  
Sunday Oke ◽  
Stephen Chidera Nwafor ◽  
Chris Abiodun Ayanladun

In recent years, novel products from out–of–use A356 alloy engine components are increasingly produced for the automobile industries. Despite being a promising method the sand casting of these products reveals an inadequately understood cast geometry phenomenon for the process. At present, there is no technical solution to the optimisation of cast geometries for A356 alloy reconfigured into composites through organic matter reinforcements. This paper models and analyse sand casting process product geometries in a two–phase method. It utilises the response surface methodology with data on inputs and outputs to create the regression. Volume and density of the first casting process and the weight loss were evaluated for the various groupings of casting process variables, including length, weight, height, width of product for the first casting, weight, length, breadth of the product for the second casting, and the total weight of organic materials. The input and output associations were established in two models of regression analysis representing the central composite design, CCD. The influences of the cast geometrical variables on the evaluated responses were analysed. Furthermore, the predictive accuracy of the two regression models was evaluated. Results revealed that the applied CCD and the regression models reveals statistical adequacy and are competent to predict accurately.


2014 ◽  
Vol 903 ◽  
pp. 78-82
Author(s):  
Mohammad Hafizudin ◽  
Taufik ◽  
Mohd Razali ◽  
Nurul Farah

This paper presents the investigation of sand casting process in natural fibre reactions which is utilized kenaf fibre and empty fruit brunch fibre (EFB) in order to reinforce the silica sand casting mould. The investigation was carried out on selecting sand mould which mixture with natural fibre. As a result of surface roughness of kenaf fibre mixed with silica sand, empty fruit bunch fibre mixed with silica sand and silica sand for sand mould was evaluated. The comparison of these three types of sand mould for surface roughness are analysed by using portable surface roughness tester. Technique of mixing the natural fibre and silica sand was presented. The mould was prepared using similar volume of natural fibre between kenaf fibre and empty fruit bunch fibre. The ratio of natural fibre for two type of sand fibre mould using 100 g of natural fibre and 1 kg of silica sand. The third sand mould using only 3.3 kg of silica sand without mixed with natural fibre. Total weight of three type of sand mould is 3.3 kg. Besides, this investigation was employed with 3 mm to 5 mm length range of natural fibre and mixture mutually with silica sand. The addition of natural fibre in the sand casting mould was significantly absorbing the heat of molten metal to the surrounding. As a result, the utilization of kenaf fibre and EFB fibre for sand mould were significant on improving the surface roughness of casted LM6 material.


2021 ◽  
Vol 62 ◽  
pp. 119-131
Author(s):  
I. Rajkumar ◽  
N. Rajini ◽  
A. Alavudeen ◽  
T. Ram Prabhu ◽  
S.O. Ismail ◽  
...  

2010 ◽  
Vol 148-149 ◽  
pp. 163-167
Author(s):  
Xiao Li Jin ◽  
Zuo Sheng Lei ◽  
Kang Deng ◽  
Zhong Ming Ren

The heat transfer in steel continuous casting process under mold oscillation was calculated, and temperature fluctuation phenomena was found in the initial solidification area, the maximum value was approximate 16 °C. The effect of different continuous casting parameters on temperature fluctuation were analyzed, and the temperature fluctuation was considered to be a key factor to the formation of oscillation marks. The Index of Temperature Fluctuation(ITF) was proposed to predict the effect of temperature fluctuation on the formation of billet surface defects.


Author(s):  
Williams S. Ebhota ◽  
Akhil S. Karun ◽  
Freddie L. Inambao

The study investigates the application of centrifugal casting process in the production of a complex shape component, Pelton turbine bucket. The bucket materials examined were functionally graded aluminium A356 alloy and A356-10%SiCp composite. A permanent mould for the casting of the bucket was designed with a Solidworks software and fabricated by the combination of CNC machining and welding. Oil hardening non-shrinking die steel (OHNS) was chosen for the mould material. The OHNS was heat treated and a hardness of 432 BHN was obtained. The mould was put into use, the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some of the specimens were given T6 heat treatment and the specimens were prepared according to the designed investigations. The micrographs of A356-10%SiCp composite shows more concentration of SiCp particles at the inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite were 60 BRN and 95BRN respectively, recorded at the inner periphery of the bucket. And these values appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite respectively after heat treatment. The prediction curves of the ultimate tensile stress and yield tensile stress show the same trend as the hardness curves.


2021 ◽  
Author(s):  
Ramesh Subramanian ◽  
David Rule ◽  
Onur Nazik

Abstract Laser Powder Bed Fusion (LPBF) of metallic components is unlocking new design options for high efficiency gas turbine component designs not possible by conventional manufacturing technologies. Surface roughness is a key characteristic of LPBF components that impacts heat transfer correlations and crack initiation from co-located surface defects — both are critical for gas turbine component durability and performance. However, even for a single material, there is an increasing diversity in laser machines (single vs multi-laser), layer thicknesses (∼20–80 microns) and orientations to the build plate (upskin, vertical and downskin) that result in significant variability in surface roughness. This study systematically compares the surface roughness across the above-mentioned variables to further develop a repeatable correlation of surface roughness to the angle between the substrate normal and laser incidence direction. This presented data will be discussed in detail, to show potential applicability of this process signature curve across materials, machines, and substrate orientations. Future steps to a rapid process qualification standard for surface roughness, across Siemens Energy’s global manufacturing footprint will also be discussed.


2001 ◽  
Vol 18 (3/4) ◽  
pp. 392-417 ◽  
Author(s):  
R.W. Lewis ◽  
M.T. Manzari ◽  
D.T. Gethin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document