scholarly journals Studi Ekstraksi Bijih Emas Asal Pesawaran dengan Metode Pelindian Agitasi dalam Larutan Sianida

2020 ◽  
Vol 4 (2) ◽  
pp. 103
Author(s):  
La Ode Arham ◽  
Fika Rofiek Mufakhir ◽  
Hendra Saputra

Research on the extraction of gold ore from Pesawaran, , Lampung, Indonesia, was carried out using the agitation leaching method in cyanide solution. This study aimed to obtain information on the use of conventional cyanidation methods for extracting gold from the Pesawaran gold ore. The ore preparation was carried out in the form of crushing, grinding and sieving to obtain samples with fraction sizes of -60 + 100 mesh, -100 +150 mesh, -150 + 200 mesh and -200 mesh. The ore characterization was performed using XRD, XRF, SEM-EDX, and wet chemical analysis. The XRD analysis showed that the main mineral phases were silica, hematite, aluminium hydroxide and orthoclase. The major constituents of the ore were Si (53,628%), Fe (15,996%), K (19,744%) and Al (8,045%). The Au content was determined by wet chemical analysis and was found to be 9.67 ppm. The experimental results show that the highest percentage of gold extraction of 83.33% was obtained using sodium cyanide at a concentration of 1000 ppm, a percent solids of 40% and a grain size of 200 mesh. Higher gold extraction was not achieved despite the use of a high cyanide concentration was probably because the remaining gold was not properly liberated. The results of SEM-EDX analysis showed that the gold grain size was <20 µm, while the grinding was performed only to a sieve size of -200 mesh (74 µm).

2021 ◽  
Vol 882 (1) ◽  
pp. 012027
Author(s):  
L O Arham ◽  
F R Mufakhir ◽  
I A Putri ◽  
Wahab ◽  
H Z Hakim ◽  
...  

Abstract Research on the characterization of gold ore from Babakan Loa sub-district and studies of leaching in cyanide solution has been carried out. This research was conducted to determine the characteristics of gold ore from Babakan Loa and the leaching behavior in cyanide solution. The preparations carried out were crushing and grinding to obtain several size fractions. The ore characterization was carried out through XRD, XRF, SEM-EDX, and wet chemical analysis. XRD analysis results show that the main mineral phases are quartz, hematite, goethite, kaolinite, montmorillonite, and berlinite. The main constituents of the ore were Si (60.96%), Fe (10.71%), K (5.47%), and Al (19.53%). The Au content was 7.8 ppm, and the results of SEM-EDX analysis show that the gold grain size is smaller than 10µm. The leaching process showed that the highest percent gold extraction data of 92.7% was obtained in experiments with 1000 ppm sodium cyanide concentration, 10% solids percent, and 104-149µm grain size. Increasing the percentage of solids and the reduction in grain size led to a decrease in the percentage of gold extraction. The clay content was suspected to be the cause of the ineffectiveness of the leaching process in this study.


2021 ◽  
Author(s):  
M. Deniz Turan

AbstractZinc extraction from zinc-containing residual (ZCR) was examined with the leach of sulfuric acid of original materials and the materials milled in two different mill systems. For this purpose, vibrating ball mill (VBM) and ring mill (RM) were used. In chemical analysis of ZCR, it was determined that it contains a significant amount of zinc, lead, iron and silver and consisted of mostly CaSO4.2H2O, PbO, SiO2, Fe2O3, ZnFe2O4, Al2FeO4 and PbSO4 mineral phases. It was determined in XRD analysis of samples milled at both mills that peak intensity dramatically decreased when compared to original sample.According to comparative characterization analyses of the milled samples, it was determined that through the increasing grinding time, the particles became agglomerated and an increase in grain size occurred. This situation was also supported by N2-BET and SEM analyses.While zinc extraction value of the sample milled for 1 min, which was obtained at 0.5 M H2SO4 at leach temperature of 25 °C, at the solid–liquid rate of 100:1 and during the leach time of 30 min, was 90% and 60% for, respectively, VBM and RM, zinc of 54% was determined to be extracted in the leach of the original sample, under the same conditions.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


1994 ◽  
Vol 58 (391) ◽  
pp. 307-314 ◽  
Author(s):  
Mizuhiko Akizuki ◽  
Hirotugu Nisidoh ◽  
Yasuhiro Kudoh ◽  
Tomohiro Watanabe ◽  
Kazuo Kurata

AbstractA study of apatite crystals from the Asio mine, Japan, showed sectoral texture related to the growth of the crystal, and with optically biaxial properties within the sectors. Wet chemical analysis gave a composition Ca5(PO4)3(F0.64,OH0.38,Cl0.01)1.03 for the specimen.Additional diffraction spots were not observed in precession and oscillation X-ray photographs and electron diffraction photographs. Since the internal textures correlate with the surface growth features, it is suggested that the internal textures and the unusual optical properties were produced during nonequilibrium crystal growth. The fluorine/hydroxyl sites in hexagonal apatite are symmetrically equivalent in the solid crystal but, at a growth surface, this equivalence may be lost, resulting in a reduction of crystal symmetry. Heating of the apatite to about 850°C results in the almost complete disappearance of the optical anomalies due to disordering, which may be related to the loss of hydroxyl from the crystal.


2021 ◽  
Vol 164 ◽  
pp. 106822
Author(s):  
Hong Qin ◽  
Xueyi Guo ◽  
Qinghua Tian ◽  
Dawei Yu ◽  
Lei Zhang

2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


Sign in / Sign up

Export Citation Format

Share Document