scholarly journals ANALISIS GANGGUAN HUBUNG SINGKAT PADA JARINGAN PEMAKAIAN SENDIRI PLTU BOLOK PT. SMSE (IPP) UNIT 3 DAN 4 MENGGUNAKAN SOFTWARE ETAP 12.6.0

2019 ◽  
pp. 79-88
Author(s):  
Agusthinus S. Sampeallo ◽  
Nursalim Nursalim ◽  
Patrisius J. Fischer

Bolok Steam Power Plant has its own 6.3 kV usage network to service loads such as Feed Water Pump and Circulating Pump Feed. This self-use network is expected to supply unit loads at the Bolok coal-fired steam power plant without any interference. The presence of disturbances such as short circuit in the electric power system can cause problems such as damage to electrical equipment and the emergence of a power outage. Therefore problems that arise like this require an analytical study to determine the short circuit current that will occur while reducing the consequences that arise. This study aims to determine the largest short circuit fault current with the help of ETAP 12.6.0 software. Short circuit simulation results with ETAP 12.6.0 will be compared with manual calculations based on positive, negative and zero sequence impedance values from the point of disturbance location. Based on the results of the research that has been done, it is known that the type of two-phase short circuit interference to the ground is the largest type of interference, which is equal to 10,615 kA on the generator bus. Whereas for the smallest type of short circuit interference is the type of disturbance one phase to the ground that is equal to 3,967 kA on the OutGoing II bus. From the results of the simulations conducted, it can also be seen that changes in the value of short circuit fault currents are affected by changes in the number of operating loads. The more load that operates the positive and negative sequence impedance the smaller and the value of the short circuit current will be greater, while the zero sequence impedance does not affect the amount of load operating, as well as the opposite.

Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


Author(s):  
Benjamin Kloss-Grote ◽  
Michael Wechsung ◽  
Rainer Quinkertz ◽  
Henning Almstedt

Abstract Environmental aspects have increased the pressure on the fossil power generation industry to reduce carbon dioxide (CO2) emissions. One way to achieve this is by increasing the overall plant efficiency, which also fosters an economical plant operation. How can the efficiency of a next generation coal fired ultra super critical (USC) steam power plant (SPP) be increased significantly in the nearest future while maintaining its familiar reliability and availability at the same time? In China’s national USC SPP demonstration project, Pingshan Phase II, this challenge is met by a double reheat cross compound turboset with one elevated and one conventional turbine layout, together with increased steam parameters of up to 325 bar and steam temperatures of up to 630°C. The nominal electrical capacity of the plant will be 1350 megawatts (MW). With this set up, a ‘half-net’ efficiency of more than 52.2 percent is expected [‘half-net’ = gross efficiency with generator power reduced by boiler feed water pump power consumption]. The first, elevated turbine train consists of two high-pressure modules having different pressure stages and one generator and it is located close to the main headers of the boiler at a height of appr. 83 meters. This unique turbine arrangement allows the expensive high-temperature pipes to be shortened, leading to substantially reduced pipe pressure losses and costs. The second turbine train will be installed on a conventional turbine deck at a height of appr. 17 meters and consists of two intermediate pressure and three low pressure turbine modules as well as a second generator. In this paper, the advanced steam turbine technology for this power plant concept is presented and discussed in detail. To achieve the next level of efficiency with an SPP today, the application of the 700°C material class is not possible to due to the slow progress of the associated technology development. It is more expedient to exploit the limits of the 600°C material class to the highest possible extent in USC conditions i.e. to the pressures and temperatures mentioned above. Design concept studies have shown that 52.2% ‘half-net’ efficiency cannot be achieved with a single reheat layout, so a double reheat (DRH) layout has been chosen. In addition, 1350 MW cannot be achieved with one turbine train (tandem compound), but only with two turbine trains (cross compound). In order to achieve the highest reliability possible, proven turbine design topologies and features have been used. The major change to the Siemens barrel type VHP turbine was a material change from 10% Chromium steels to FB2 and CB2. The HP turbine received increased wall thicknesses as well as a similar material change compared to a standard USC design. In order to control the oxidation at these elevated temperatures, oxidation protection measures have been applied where required. The startup procedure has been tailored specifically to the needs of a double reheat cross compound configuration.


Author(s):  
A. Pourmovahed ◽  
C. M. Jeruzal ◽  
S. M. A. Nekooei

Applied Thermodynamics is a graduate course at Kettering University. Undergraduate Thermodynamics serves as the only prerequisite. This course covers the concepts introduced in undergraduate thermodynamics and continues with the coverage of thermodynamic relations, mixtures and solutions, psychrometry, phase and chemical equilibrium, and chemical reactions. These concepts are then applied in detail to various power and refrigeration cycles. Topics such as mole fraction, mass fraction, enthalpy of formation, adiabatic flame temperature and the application of the Second Law to reacting mixtures are covered. Team projects are incorporated into this graduate course. Recent projects included a turbojet engine and a non-ideal regenerative steam power plant. The objective of the first project was to compute component efficiencies and the thrust force for a jet engine. The second project aimed to optimize the thermal efficiency of a non-ideal regenerative steam power plant by varying the feed-water heater pressure. Both projects utilized the Engineering Equation Solver (EES), a general equation solver with built-in functions for thermodynamic and transport properties. This article describes the projects and presents the solution techniques and the computed results. For the jet engine, computed results are based on actual test data obtained in Energy Systems Laboratory at Kettering University.


2008 ◽  
Vol 19 (3) ◽  
pp. 35-45 ◽  
Author(s):  
R.K. Kapooria ◽  
S. Kumar ◽  
K.S. Kasana

Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of gener-ating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant. The efficiency of a thermal power plant depends upon the efficiency of the condenser. In this paper, a the-oretical investigation about thermal analysis and design considerations of a steam condenser has been undertaken. A hybrid steam condenser using a higher surface area to diameter ratio of cooling a water tube has been analyzed. The use of a hybrid steam condenser enables higher efficiency of the steam power plant by lowering condenser steam pressure and increasing the vacuum inside the con-denser. The latent/sensible heat of steam is used to preheat the feed water supply to the boiler. A con-ceptual technological design aspect of a super vacu-um hybrid surface steam condenser has been theo-retically analyzed.


2017 ◽  
Vol 31 (7) ◽  
pp. 3573-3580 ◽  
Author(s):  
Ahsan Alam ◽  
Mubashir Ali Siddiqui ◽  
Naveed ur Rehman

Author(s):  
Sepehr Sanaye ◽  
Behrooz Farshi ◽  
Hashem Turk

In design of a real steam power plant cycle with seven or eight open and closed feed water heaters, choosing the appropriate turbine extraction pressures has important effect on the cycle efficiency. By considering the steam cycle thermal efficiency as an objective function, various optimization techniques including the Full Search, Hook-Jeeves and Nelder-Mead schemes were applied for selecting the proper arrangement of feed water heaters and the optimum steam turbine extraction pressures. In order to optimally design and accurately analyze the behavior of steam power plant cycles, a modular software based on object oriented programming has been developed. Steam cycle elements used in this software while forming a set of independent objects, collectively present an inter-related behavior. In the design environment of the software, a complete steam cycle power plant can be visually designed and analyzed. The correct performance of this software in calculation of the state variations at various cycle points and the cycle thermal efficiency was checked and verified. The values of extraction pressures and mass flow rates at the optimum design point were assessed and found to be in agreement with the corresponding values of existing power plants. Based on the literature available, incorporation of all the design features involving modular aspect with optimization search using several algorithms and comparisons made of the results with actual power plant performances have not yet been successfully accomplished in a software package.


2021 ◽  
Vol 288 ◽  
pp. 01091
Author(s):  
Serdar Nazarov ◽  
Gurbangulych Kelov ◽  
Berdimyrat Gochyev

In high-voltage electrical networks, the occurrence of short circuits leads to forced interruptions in the power supply of large consumers and disruptions in intersystem communications. More than 65% of all types of occurring short circuits are single-phase short circuits [1]. In a single-phase short circuits (SPSC), a change in the zero sequence resistance (ZSR) especially significantly affects the inaccuracy in detection of damage sites (DDS). When choosing DDS methods, preference is given to remote methods according to the parameters of the emergency conditions (PEC), which are recorded by special instruments or determined from the oscillograms of emergency conditions. The use of modern microprocessor-based relay protection and automation devices (RPA) [26] or emergency event recorders allow viewing the oscillograms of emergency events. In a branched 110 kV network with a complex configuration, the DDS accuracy is influenced by a change in the ZSR. Averaging of specific parameters often leads to erroneous results. The choice of one value from the oscillograms puts the maintenance personnel in difficulty. In the scientific work, the influence of changes in the ZSR on the accuracy of the DDS is considered. The changes in the ZSR are influenced by the position of the on-load voltage regulator (OLTC) switches of transformers with a grounded neutral. In the work, for a more accurate record of the specific parameters of the network, a calculation program has been compiled, which allows making changes in the calculated specific parameters of the network. To determine the short-circuit current from the oscillograms, it is proposed to determine the stable state of accidents in which the current value will be approximately the same. The analysis of the oscillograms of SPSC in 110-220 kV networks in the southern part of the electric power system of Turkmenistan has been carried out.


2015 ◽  
Vol 52 (4) ◽  
pp. 214-225 ◽  
Author(s):  
E. Plesiutschnig ◽  
R. Vallant ◽  
G. Stöfan ◽  
C. Sommitsch ◽  
M. Mayr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document