scholarly journals Changes in the growth and reproduction of a clonal plant as a result of disruption of mycorrhizal network

2021 ◽  
Vol 66 (2) ◽  
pp. 195-200
Author(s):  
Martyna Dominiak-Świgoń ◽  
Zbigniew Kasprzykowski ◽  
Marlena Lembicz

In a clonal network, a mother plant is connected with daughter ramets. During network development, new ramets may encounter barriers that disrupt network integrity. As a result, resource allocation within a network is disturbed. In this study, the effect of network integrity disruption on the size of ramets and their sexual reproduction was investigated in mouse-ear hawkweed (Hieracium pilosella). Three types of networks were formed experimentally with unlimited resource allocation, with limited resource allocation between a mother plant and its daughter ramets and with limited resource allocation between all ramets. Networks were either supported by the presence of a mycorrhizal fungus or restricted by its absence. We found that the size of the mother and the effectiveness of sexual reproduction did not differ among network types. The length and dry mass of runners were higher in cases with limited resource exchange between a mother plant and its daughters. In the clonal plant network without any barriers to connection, a higher number of rosettes and lower dry mass of daughters were recorded. The mean number of daughter flowers did not differ among the network types. Mycorrhizal network is one of the most important factors for the sexual reproduction of clonal plants. With a reduced mycorrhizal network, plants invested in clonal growth.

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258253
Author(s):  
Yu Jin ◽  
Qian Zhang ◽  
Li-Min Zhang ◽  
Ning-Fei Lei ◽  
Jin-Song Chen ◽  
...  

Current knowledge on responses of aquatic clonal plants to resource availability is largely based on studies manipulating limited resource levels, which may have failed to capture the “big picture” for aquatic clonal plants in response to resource availability. In a greenhouse experiment, we grew the floating clonal plant Spirodela polyrhiza under ten nutrient levels (i.e., 1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×full-strength Hoagland solution) and examined their responses in terms of clonal growth, morphology and biomass allocations. The responses of total biomass and number of ramets to nutrient availability were unimodal. A similar pattern was found for frond mass, frond length and frond width, even though area per frond and specific frond area fluctuated greatly in response to nutrient availability. In contrast, the responses of root mass and root length to nutrient availability were U-shaped. Moreover, S. polyrhiza invested more to roots under lower nutrient concentrations. These results suggest that nutrient availability may have distinct influences on roots and fronds of the aquatic clonal plant S. polyrhiza, resulting in a great influence on the whole S. polyrhiza population.


2013 ◽  
Vol 61 (4) ◽  
pp. 274 ◽  
Author(s):  
Rujin Bian ◽  
Dandan Nie ◽  
Fu Xing ◽  
Xiaoling Zhou ◽  
Ying Gao ◽  
...  

As a prominent epigenetic modification, cytosine methylation may play a critical role in the adaptation of plants to different environments. The present study sought to investigate possible impacts of differential levels of nitrogen (N) supply on cytosine-methylation levels of a clonal plant, Hierochloe glabra Trin. (Poaceae). For this purpose, nitrate was applied at concentrations of 0, 0.15, 0.30 and 0.45 g N kg–1 soil, and ecologically important morphological traits were measured. The methylation-sensitive amplification polymorphism method was also conducted to analyse the variations in DNA cytosine methylation. Our results showed that N addition reduced CHG cytosine-methylation levels markedly compared with control plants growing in homogeneous pots (P = 0.026). No substantial differences were observed in morphological traits at the end of the growing stage, except for the highest ratio of leaf area to leaf dry mass in the medium-N patch (P = 0.008). However, significant linear regression relationships were found between cytosine-methylation levels and morphological traits, such as bud number and rhizome length and biomass. In conclusion, the higher cytosine-methylation level may activate asexual reproduction to produce more offspring and expand plant populations, possibly helping clonal plants to adapt to heterogeneous habitats.


2014 ◽  
Vol 74 (3) ◽  
pp. 744-749 ◽  
Author(s):  
GR Demetrio ◽  
FF Coelho ◽  
MEA Barbosa

Body size is one of the most important factors regarding herbaceous perennial plants life-histories, and several fitness components of these organisms are related to size. Clonal plants show distinct kinds of reproduction and can develop offspring by sexual or asexual ways. We aimed to understand how body size affects Comanthera nivea (Eriocaulaceae) sexual reproduction and to verify how clonal growth is related to flower head production in this species. We sampled 600 rosettes in rupestrian grasslands and performed linear regression analysis between body size and number of produced flower heads. We also compared the flower head production between isolated rosettes and rosettes within clones. Our results showed that body size was significantly related, but explained only a small part of flower head production. The flower head production was higher in rosettes within clones than in isolated ones. The clones presented a rosette or a small group of rosettes that concentrated the sexual reproduction. Clonality was positively associated with sexual reproduction. Clonality can represent an important way of allowing the persistence of plants by sexual reproduction in markedly seasonal stressful environments. The cases of clonality enhancing the sexual reproduction must be considered and put in focus on reproductive biology research.


Zuriat ◽  
2015 ◽  
Vol 11 (2) ◽  
Author(s):  
D. P. de Vries ◽  
, Darliah ◽  
Lidwien A.M. Dubois

BIOBREES is a co-operative scientific programme between Indonesia and The Netherlands, of which the rose part aims at breeding cut roses adapted to the tropical highland. Within that scope four direct plant characters of 62 cut rose genotypes in different physiological stages were studied. The genotypes originated from cross-breeding in 1995 and successive selection for cut rose properties in populations at Plant Research International, Wageningen, The Netherlands, in 1996. Plant stages stuAn died were (i) superior adult seedlings in Wageningen in 1996, (ii) clones grafted onto Natal Briar both in Wageningen and Cipanas in 1997. Clonal Plant Research International, Wageningen, Plant Research International, Wageningen, clonal plants in Cipanas had significantly shorter shoots, more thorns, smaller flowers and fewer petals than the adult seedlings in Wageningen. Clonal plants in Wageningen, however, had significantly longer shoots; more thorns, and larger flowers with more petals than the seedlings in Wageningen. Despite differences in level of expression, for each character the absence of genotype-location interaction was ascertained. The expression of characters as influenced by light (both quantitative and qualitative), temperature and cultivation is discussed in relation to selection of cut roses in the temperate zone, which are adapted to the tropical highland.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Anatálya dos Santos Ribeiro ◽  
Alexssandra Jéssica Rondon de Figueiredo ◽  
Gabriela Cristina Rech Tormen ◽  
André Luís Lopes da Silva ◽  
Wellington Ferreira Campos ◽  
...  

Bamboo species are an alternative for the composition of forest plantations. However, their potential has not been explored due to the hard time in producing large-scale clonal plants. Thus, the aim this work was to evaluate the in vitro establishment, bud multiplication and ex vitro rooting of Bambusa vulgaris. The first experiment tested different systemic and contact fungicide solutions, based on exposure time, during the establishment phase. Established explants were subjected to evaluation of residual fungicide effect on subcultures during the multiplication and elongation phases. The second experiment evaluated the influence of activated carbon on ex vitro survival and on adventitious rooting. Explant immersion in liquid culture medium added with 1.0 mL of fungicide for 120 hours has favored the in vitro establishment and reduced fungal contamination. On the other hand, it favored the shoot emission of shoots per explant during the multiplication phase. Both rooting induction culture medium and mini-incubator system use were effective in enabling adventitious root formation. The presence of activated carbon in the rooting induction culture medium resulted in a higher clonal plant survival rate.  


Autophagy ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Hui Gao ◽  
Muhammad Babar Khawar ◽  
Wei Li

Sign in / Sign up

Export Citation Format

Share Document