scholarly journals The Rybinsk Reservoir Water Quality: the Dissolved Oxygen Regime.

Author(s):  

This study was undertaken to investigate the dissolved oxygen content and saturation percentage in surface and near-bottom water of the Rybinsk Reservoir in 2011-2015 with Winkler method. Seasonal and annual variations of the oxygen concentrations in the water body were identified. It was found that in summer time shallower water in the Main part was seldom subjected to oxygen stratification and if stratification occurred it ass less expressed than in deeper parts of the reservoir. Comparison of the new data on the dissolve oxygen concentration with the previously obtained data was made. Over the past years, there have not been any significant changes in the reservoir oxygen regime. The dissolved oxygen concentration in the reservoir seldom reached full saturation of the studied period. On average, aquatic organisms in the water body have enough dissolved oxygen. However, sometimes its concentration in nearbottom layers drops to critically low levels, threatening aquatic life.

1975 ◽  
Vol 32 (12) ◽  
pp. 2295-2332 ◽  
Author(s):  
John C. Davis

This article reviews the sensitivity, responses, response thresholds, and minimum oxygen requirements of marine and freshwater organisms with strong emphasis on Canadian species. The analysis attempts to define low dissolved oxygen thresholds which produce some physiological, behavioral, or other response in different species.Oxygen availability is discussed with reference to seasonal, geographical, or spatial variation in dissolved oxygen. Factors affecting availability of dissolved oxygen include atmospheric exchange, mixing of water masses, upwelling, respiration, photosynthesis, ice cover, and physical factors such as temperature and salinity. Dissolved oxygen terminology is summarized and tables are included for both fresh and saltwater O2 solubility at different temperatures.Incipient O2 response thresholds are used in a statistical analysis to develop oxygen criteria for safeguarding various groups of freshwater and marine fish. These include mixed freshwater fish populations including or excluding salmonids, freshwater salmonid populations, salmonid larvae or mature salmonid eggs, marine anadromous and nonanadromous species. Criteria are based on threshold oxygen levels which influence fish behavior, blood O2 saturation, metabolic rate, swimming ability, viability and normal development of eggs and larvae, growth, circulatory dynamics, ventilation, gaseous exchange, and sensitivity to toxic stresses. The criteria provide three levels of protection for each fish group and are expressed as percentage oxygen saturation for a range of seasonal temperature maxima.Oxygen tolerances and responses of aquatic invertebrates to low oxygen are reviewed for freshwater and marine species according to habitat. No invertebrate criteria are proposed owing to the capacity for many invertebrate species to adopt anaerobic metabolism during low O2 stress. It is suggested that the criteria proposed for fish species will provide a reasonable safeguard to most invertebrate species. It appears likely, however, that a change in oxygen regime to one of increased O2 scarcity will probably influence invertebrate community structure.It is suggested that criteria for protection of aquatic life be implemented by groups of experienced individuals. The group should consider the natural oxygen regime for a specific water body and its natural variability, the aquatic life therein and its value, importance, relative O2 sensitivity, and the possibility of interactions with toxicants and other factors that may compound the stress produced by low O2 on aquatic life. Each water body and its aquatic life should be considered as a unique situation and criteria application should not encompass diverse areas, habitats, or biological associations as if they were identical.


2021 ◽  
Vol 258 ◽  
pp. 08007
Author(s):  
Nadezhda Khodorovskaia ◽  
Vladislav Yachmenev ◽  
Anna Kravtsova ◽  
Svetlana Kraineva ◽  
Larisa Deryabina

In this article a “well-being” degree of the water supply source of a major industrial center (Chelyabinsk, Russia) is determined in compliance with criteria of the sustainable development goal 6 “Clean water and sanitation” (SDG 6). It is demonstrated that the Shershnevskoye reservoir corresponds to the main water quality indicators recommended by the SDG 6 and is the “good-quality” water body according to the national standards for maximum permissible concentrations for drinking water use during the entire period of the reservoir existence. The dynamics of pH level, mineralization, dissolved oxygen, nitrogen, phosphorus and heavy metals content in the water of the reservoir for the period from 1975 to 2020 was analyzed. Stable neutral-alkaline conditions in the reservoir water were revealed; a statistically significant decrease of mineralization, increase of dissolved oxygen content and a strong trend of mineral phosphorus growth are observed, which characterizes strengthening of photosynthetic processes and increase of productivity and anthropogenic eutrophication level of the water body. The risk factor for the reservoir ecological well-being is heavy metal content, especially iron, manganese and copper.


2015 ◽  
Vol 15 (6) ◽  
pp. 1187-1192 ◽  
Author(s):  
Fahri Ozkan ◽  
Ibrahim Halil Demirel ◽  
Muhammed Cihat Tuna ◽  
Ahmet Baylar

Aeration is the process of bringing water and air into close contact in order to increase dissolved oxygen concentration. The concentration of dissolved oxygen is an important indicator of water quality because aquatic life lives on the dissolved oxygen in the water. The hydraulic structures can be accepted as the key components in increasing dissolved oxygen concentration because of the strong turbulent mixing associated with substantial air bubble entrainment at these structures. Closed conduit is a classic example of a hydraulic structure where aeration occurs. This work focused on determining the effect of conduit length on air-demand ratio and aeration efficiency in free-surface gated circular conduits. Experimental results showed that the Froude number had an important effect on the air-demand ratio and the aeration efficiency. The effect of the conduit length on the air-demand ratio and the aeration efficiency changed depending on the Froude number. It was demonstrated from the results that a free-surface gated circular conduit flow system had high efficiency in transferring oxygen from air bubbles to water. Moreover, a formula for the aeration efficiency was presented relating the aeration efficiency to the conduit length and the Froude number.


1988 ◽  
Vol 23 (4) ◽  
pp. 568-577
Author(s):  
Harold S. Bailey

Abstract The water quality of the upper 110 kilometres of the St. Croix River is considered to be pristine. A major industrial discharge renders the lower 14 kilometres of the river a water quality limited segment. Prior to 1970 the Georgia-Pacific Pulp and Paper Mill at Woodland, Maine, discharged untreated effluent directly into the river causing dissolved oxygen concentrations to drop well below 5 mg/L, the objective chosen in the interest of restoring endemic fish populations. Since 1972, the Mill has installed primary and secondary treatment, regulated river discharge rate and effluent composition which has greatly improved the summer dissolved oxygen regime. By 1980, dissolved oxygen concentrations were generally above 5.0 mg/L and restocking the river with Atlantic Salmon (Salmo salar) was initiated.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1769-1778 ◽  
Author(s):  
S.-I. Lee ◽  
B. Koopman ◽  
E. P. Lincoln

Combined chemical flocculation and autoflotation were examined using pilot scale process with chitosan and alum as flocculants. Positive correlation was observed between dissolved oxygen concentration and rise rate. Rise rate depended entirely on the autoflotation parameters: mixing intensity, retention time, and flocculant contact time. Also, rise rate was influenced by the type of flocculant used. The maximum rise rate with alum was observed to be 70 m/h, whereas that with chitosan was approximately 420 m/h. The efficiency of the flocculation-autoflotation process was superior to that of the flocculation-sedimentation process.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 381-385 ◽  
Author(s):  
Y. Oziransky ◽  
B. Shteinman

Data of high spatial and temporal resolution, and a special sampling program are essential for successful application of mathematical models designed to reproduce observed seasonal patterns of temperature, dissolved oxygen, nutrients, pH, and algal biomass for both vertical and longitudinal gradients in a water body. Lake Kinneret suspended solids are of great potential value for estimating transport, exposure to water body elements, and fate of many toxic substances. Therefore the distribution of admixtures in two longitudinal and five vertical segmentation schemes were examined with the two-dimensional water body quality box model “BETTER” (Bender et al, 1990). The transects were taken in the north-western part of Lake Kinneret close to the Jordan River mouth and the National Water Carrier (NWC) head pumping station. The outflow volumes were given according to regular sampling of natural speed of water outflow from different lake layers under calm conditions. Temporal distribution of mixing concentrations as well as turbulent diffusion horizontal coefficients due to the spatial distribution of turbulent scale were obtained during the model's run with the December 1991 data.


Sign in / Sign up

Export Citation Format

Share Document