scholarly journals Estimation of the relation of NDVI steppe vegetation and radial growth of pine belt forests in arid conditions of the south of Western Siberia

Author(s):  
Natalia Rygalova ◽  
Tatiana Plutalova

This article presents a spatial-temporal analysis of the NDVI vegetation series (based on the MODIS satellite data) and dendrochronological data obtained for the steppe regions of the Altai Territory. NDVI series are built for five polygons of natural and natural-anthropogenic steppe landscapes for the period 2000–2018. Experimental areas of natural landscapes are located in coastal and specially protected natural areas, natural and anthropogenic arable lands. Most of the points are located in the dry-steppe sub-provinces of the steppe zonal area, a smaller part is in the arid-steppe (including the dendrochronological area). The chronology of the tree ring width is built for the Scots pine in the steppe part of extrazonal belt pine forests. A positive trend in vegetation indices change and a weak positive trend for the tree-ring chronology of the pine were found for the NDVI series of almost all polygons for the study period. A more pronounced positive trend is characteristic of the area with the lowest average NDVI values, while a negative trend is characteristic of the area with the highest average values of the vegetation index. The correlation of the NDVI series averaged over polygons with each other ranged from 0.54 to 0.64 (significant at p < 0.05). The dependence of the analyzed series on the dynamics of moistening of the territory was revealed. The correlation coefficients of the Selyaninov hydrothermal coefficient with the NDVI series ranged from 0.51 to 0.76, and with the tree-ring chronology was 0.63 (significant at p < 0.05). A statistically significant relationship was established for some points between the chronology of the pine and the NDVI series, mostly related to dry steppe vegetation.

IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Gaiai Guo ◽  
Zong-Shan Li ◽  
Qi-Bin Zhang ◽  
Ke-Ping Ma ◽  
Conglong Mu

Expansion of climate proxy records over space is needed for improving our knowledge of past climate variability. Here we report on a 112-year tree-ring chronology of Picea likiangensis (Franch.) E.Pritz. and a 165- year tree-ring chronology of Tsuga dumosa (D.Don) Eichler for the Lijiang area, northwestern Yunnan, China. Mean correlation coefficients of tree-ring width series among individual trees are 0.48 for P. likiangensis and 0.45 for T. dumosa, indicating a growth response to common environmental variability. Analysis of climate-growth relationships shows that the radial growth of P. likiangensis is mainly negatively correlated with temperature from December of the prior growth year to May of the growth year, and that of T. dumosa is mainly positively correlated with precipitation of January and May in the growth year. We further found that the chronology of T. dumosa can be used to reconstruct the May-June Palmer Drought Severity Index. The reconstruction shows that major wet periods occurred in the 1860s, 1910s and 1940s, and drought periods in 1892–1905, 1914–1924 and 1928–1938. The moisture condition of the late 20th century is characterized by a near-normal state from the 1950s to the 1970s and an increasing trend from 1982 to 2003.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Magdalena Opała

Abstract An annually resolved and absolutely dated ring-width chronology spanning 443 years has been constructed using the historical and living-tree Scots pine samples from the Upper Silesia, south of Poland. The constructed regional chronology, based on six object chronologies, covers the period of 1568-2010. It is composed of 178 wood samples with the mean correlation of 0.51, mean series length of 104 years and mean EPS of 0.85. In total, 65 extreme years were distinguished. Their inde-pendent verification, based on the historical and meteorological data, showed significant correlation with the exceptionally cold/mild winters as well as severe droughts. The comparison of the extreme years with the other Polish pine chronologies showed similarities in the years with the anomalous winter conditions. Some extreme years can be associated with the exceptional pluvial conditions; these years are common in the Central European hydroclimatic tree-ring records. The construction of this regional pine chronology enables for the absolute dating of many architectural monuments from investigated region. The application of the new chronology for the dating of local wood can support interpretations of changes in the environment of the Upper Silesian region. In the future it can also be used as the basis for climate reconstruction.


2014 ◽  
Vol 31 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Samuli Helama ◽  
Jari Holopainen ◽  
Mauri Timonen ◽  
Kari Mielikäinen

Abstract A near-millennial tree-ring chronology (AD 1147-2000) is presented for south-west Finland and analyzed using dendroclimatic methods. This is a composite chronology comprising samples both from standing pine trees (Pinus sylvestris L.) and subfossil trunks as recovered from the lake sediments, with a total sample size of 189 tree-ring sample series. The series were dendrochronologically cross-dated to exact calendar years to portray variability in tree-ring widths on inter-annual and longer scales. Al though the studied chronology correlates statistically significantly with other long tree-ring width chronologies from Finland over their common period (AD 1520-1993), the south-west chronology did not exhibit similarly strong mid-summer temperature or spring/early-summer precipitation signals in comparison to published chronologies. On the other hand, the south-west chronology showed highest correlations to the North Atlantic Oscillation indices in winter/spring months, this association following a dendroclimatic feature common to pine chronologies over the region and adjacent areas. Paleoclimatic comparison showed that tree-rings had varied similarly to central European spring temperatures. It is postulated that the collected and dated tree-ring material could be studied for wood surface reflectance (blue channel light intensity) and stable isotopes, which both have recently shown to correlate notably well with summer temperatures.


1965 ◽  
Vol 19 ◽  
pp. 101-121 ◽  
Author(s):  
Harold C. Fritts ◽  
David G. Smith ◽  
Marvin A. Stokes

AbstractRing-width chronologies in Douglas-fir, pinyon pine, and Utah juniper show some distinctly different characteristics and exhibit highly predictable relationships with variations in climate. Narrow rings in Douglas-fir are largely the result of low precipitation and high temperatures of the previous June, low precipitation during August through February, low precipitation and low temperatures during March through May, and low precipitation and high temperatures of the current June. Narrow rings in pinyon pine are largely a function of low precipitation from October through May, but high July temperatures near the end of the growing season may also exert an influence. Narrow rings in Utah juniper are the result of low precipitation and high temperatures during the previous October through November, low precipitation during December through February, and low precipitation and high temperatures during March through May. A biological model for these relationships is proposed. The tree-ring chronology from A.D. 1273 through 1285 exhibits a clearly defined drought which exceeds in length and intensity any dry period occurring since A.D. 1673. A comparison of the chronologies from species which are influenced differently by summer precipitation indicates that during this period both summers and winters must have been dry. However, the A.D. 1273-1285 drought at Mesa Verde was surpassed by six other droughts of greater intensity during the period A.D. 500–1300. The A.D. 1273–1285 drought may be only one of several factors in a chain of events which led to the decline of prehistoric population in the Mesa Verde.


2020 ◽  
Author(s):  
Nikolaus Obojes ◽  
Jennifer Klemm ◽  
Ruth Sonnenschein ◽  
Francesco Giammarchi ◽  
Giustino Tonon ◽  
...  

&lt;p&gt;To prevent further erosion of pastures along the south slopes of the Vinschgau/Val Venosta (South Tyrol/Italy) about 900 ha of non-native black pine (Pinus nigra) have been afforested there between 1900 and the 1960s. This drought-tolerant Mediterranean species was supposed to be able to cope with the dry climate at degraded soils in the inner-alpine dry valley. Nevertheless, black pine in the Vinschgau has been affected by reoccurring tree vitality decline and diebacks in the last 20 years linked to repeated droughts and heat waves. Observing growth trends via tree ring analysis is usually restricted to single stands. On the other hand, remote sensing data to track tree vitality was not available in sufficient spatial and temporal resolution to be applied to complex mountain terrain until recently. This has changed with the launch of the Sentinel-2 A and B satellites in 2015 and 2017 with a spatial resolution of 10 to 20 m and a revisiting period of 5 days. To analyse the accordance of remote sensing-based vegetation indices to tree-ring based growth data, we compared twelve sites across the Vinschgau/Val Venosta with a differing degree of vitality loss in 2017 for a four-year period from 2015 to 2018. In general, less vital sites were located at lower elevation and on steeper slopes. Radial tree growth was positively correlated to spring precipitation and strongly decreased during earlier hot and dry years such as 1995 and 2003. We found high and statistically significant correlations between site-average basal area increment as well as tree ring width indices and multiple vegetation indices (Normalized Difference Vegetation Index NDVI, Green Normalized Difference Vegetation Index GNDVI, Normalized Difference Infrared Index NDII, Moisture Stress Index MSI) especially for the dry 2017 growing season and the 2018 recovery year, which had large gradients in tree vitality between sites. Overall, these results show that remote sensing-based vegetation indices can be used to scale up stand level growth data also in complex mountain terrain.&lt;/p&gt;


2016 ◽  
Vol 23 (2) ◽  
pp. 14-19 ◽  
Author(s):  
U K Thapa ◽  
S K Shah ◽  
N P Gaire ◽  
D R Bhuju ◽  
A. Bhattacharyya ◽  
...  

 This study aims to understand the influence of climate on radial growth of Abies pindrow growing in the plateau of mixed forest in Khaptad National Park in Western Nepal Himalaya. Based on the dated tree-ring samples, 362-year long tree-ring width chronology was developed dating back to 1650. The studied taxa of this region was found to have dendroclimatic potentiality that was evident from the chronology statistics calculated. The tree-ring chronology was correlated with climate (temperature and precipitation) data to derive the tree-growth climate relationship. The result showed significant negative relationship with March-May temperature and positive relationship with March-May precipitation. This indicates that the availability of moisture is the primary factor in limiting the tree growth.Banko Janakari, Vol. 23, No. 2, 2013


2012 ◽  
Vol 9 (3) ◽  
pp. 965-972 ◽  
Author(s):  
R. Touchan ◽  
V. V. Shishov ◽  
D. M. Meko ◽  
I. Nouiri ◽  
A. Grachev

Abstract. We use the process-based VS (Vaganov-Shashkin) model to investigate whether a regional Pinus halepensis tree-ring chronology from Tunisia can be simulated as a function of climate alone by employing a biological model linking day length and daily temperature and precipitation (AD 1959–2004) from a climate station to ring-width variations. We check performance of the model on independent data by a validation exercise in which the model's parameters are tuned using data for 1982–2004 and the model is applied to generate tree-ring indices for 1959–1981. The validation exercise yields a highly significant positive correlation between the residual chronology and estimated growth curve (r=0.76 p<0.0001, n=23). The model shows that the average duration of the growing season is 191 days, with considerable variation from year to year. On average, soil moisture limits tree-ring growth for 128 days and temperature for 63 days. Model results depend on chosen values of parameters, in particular a parameter specifying a balance ratio between soil moisture and precipitation. Future work in the Mediterranean region should include multi-year natural experiments to verify patterns of cambial-growth variation suggested by the VS model.


2011 ◽  
Vol 8 (6) ◽  
pp. 11089-11105
Author(s):  
R. Touchan ◽  
V. V. Shishov ◽  
D. M. Meko ◽  
I. Nouiri ◽  
A. Grachev

Abstract. We use the process-based VS (Vaganov-Shashkin) model to investigate whether a regional Pinus halapensis tree-ring chronology from Tunisia can be simulated as a function of climate alone by employing a biological model linking day length and daily temperature and precipitation (AD 1959–2004) from a climate station to ring-width variations. We use two periods to calibrate (1982–2004) and verify (1959–1981) the model. We have obtained highly significant positive correlation between the residual chronology and estimated growth curve (r = 0.76 p < 0.001). The model shows that the average duration of the growing season is 191 days. On average, soil moisture limits tree-ring growth for 128 days and temperature for 63 days.


2021 ◽  
Vol 8 (7) ◽  
pp. 201259
Author(s):  
Hongliang Gu ◽  
Jian Wang ◽  
Chao Lei ◽  
Lijuan Ma

This study addressed the effects of climate drivers on the tree-ring width (TRW) parameters (total ring width (TR), earlywood width (EW) and latewood width (LW)) and the total ring δ 13 C series of different wood components (whole wood, α-cellulose and holocelluose) from Masson pine in subtropical China. Pairwise correlation coefficients between three ring width parameters were statistically significant. EW and LW did not reveal much stronger climate sensitivity rather than TR. This indicated that the use of intra-annual ring width has little benefit in extracting more climate information. The mean δ 13 C series of the three components of the total ring had the strongest climate response to the July–September relative humidity ( r = −0.792 (whole wood), −0.758 (holocellulose) and −0.769 (α-cellulose)). There are no significant differences in the dendroclimatic relationships of the δ 13 C series of different wood components. Through both stationary temporal and spatial-statistical perspectives, the moisture drivers (summer/autumn) had a significant impact on three ring width parameters and three components of Masson pine. Overall, the radial growth and the δ 13 C series showed different responses to the same climate drivers during the same period. Moreover, the R-squared values of the strongest climate-proxy correlation coefficients were smaller than 50% for TRW. Consequently, the δ 13 C series of Masson pine may be a more representative climate proxy than TRW parameters for dendroclimatology in subtropical China.


Sign in / Sign up

Export Citation Format

Share Document