The Level of Snow Cover Contamination with Fluoride Compounds in the Emission Zone of a Primary Aluminum Smelter

Author(s):  
LG Lisetskaya ◽  
SF Shayakhmetov

Background: Fluoride compounds are one of the main components of industrial emissions from aluminum production. Natural deposition of fluorides with precipitation leads to their accumulation in soil and surface waters. In winter, the snow cover enables an assessment of industrial pollution with fluoride compounds. The objective of our work was to study fluoride levels in the snow cover in the emission zone of the primary aluminum smelter in the town of Shelekhov, Irkutsk Region. Materials and methods: Snow sampling was performed at nine points at different distances from the plant and fluoride concentrations were then measured in the aqueous fraction and solid precipitate by a potentiometric method with ion-selective electrode. Results: The aqueous fraction was a solution of hydrofluoride and sodium fluoride. Insoluble fluorides were found as a mixture of aluminum fluoride, calcium fluoride, cryolite, and aluminum tetrafluoride. We established that the soluble fraction exceeded 90 % in all snow samples. Within the urban agglomeration, snow pollution was distributed differentially. The total fluoride level in residential areas of Shelekhov was 14 to 21 times higher than that at the reference point. At the same time, in the area of a suburban rural settlement located downwind of the smelter, it reached a 33-fold excess. Conclusion: The main source of environmental pollution in the Shelekhovsky district of the Irkutsk Region is the processing of cryolite and fluoride salts in the primary aluminum production technological cycle generating fluorine-containing gaseous emissions and solid wastes. Concentrations of industrial pollutants in snow correlated with the distance from the source of emissions and the prevailing wind directions. Contribution of a heat power engineering enterprise to the industrial pollution of the local environment with fluorides was also revealed.

Metallurgist ◽  
2015 ◽  
Vol 59 (3-4) ◽  
pp. 187-192 ◽  
Author(s):  
N. I. Yanchenko ◽  
A. P. Sukhodolov ◽  
S. L. Slutskii

2021 ◽  
Vol 170 ◽  
pp. 105584
Author(s):  
Victor Brial ◽  
Hang Tran ◽  
Luca Sorelli ◽  
David Conciatori ◽  
Claudiane M. Ouellet-Plamondon

2021 ◽  
Vol 1040 ◽  
pp. 109-116
Author(s):  
V.Yu. Piirainen ◽  
A.A. Barinkova ◽  
V.N. Starovoytov ◽  
V.M. Barinkov

Current global environmental challenges and, above all, global warming associated with a change in the carbon balance in the atmosphere has led to the need for urgent and rapid search for ways to reduce greenhouse gas emissions into the atmosphere, which primarily include carbon dioxide as a by-product of human activity and technological progress. One of these ways is the creation of industries with a complete cycle of turnover of carbon dioxide. Aluminum is the most sought-after nonferrous metal in the world, but its production is not environmentally safe, so it constantly requires the development of knowledge-intensive technologies to improve the technological process of cleaning and disposal of production waste, primarily harmful emissions into the atmosphere. Another environmental problem related to aluminum production is the formation and accumulation in mud lagoon of huge amounts of so-called highly alkaline "red mud," which is a waste product of natural bauxite raw material processing into alumina - the feedstock for aluminum production. Commonly known resources and technological methods of neutralizing red mud and working with it as ore materials for further extraction of useful components are still not used because of their low productivity and cost-effectiveness. This article describes the negative impact of waste in the form of "red" mud and carbon dioxide of primary aluminum production on the environment. The results showed that thanks to carbonization of red mud using carbon dioxide, it is possible to achieve rapid curing and its compact formation for safer transportation and storage until further use. Strength tests of concrete samples filled with deactivated red mud were also carried out, which showed the prospects of using concrete with magnesia binder.


Author(s):  
Alexey Sverdlin

Aluminum is the most heavily consumed non-ferrous metal in the world with an annual consumption of approximately 24 million tons of which it is estimate that 75% of this total amount is primary aluminum (aluminum extracted from ore). This article provides an overview of aluminum ores and their composition, reduction of aluminum, production of commercial quality aluminum, extraction, refinement and the production of ultrapure aluminum.


Author(s):  
Efthymios Balomenos ◽  
Dimitrios Gerogiorgis

The Hall–Héroult process for the electrolytic reduction of alumina was developed at the end of the 19th century and is still currently the only industrial process for the production of primary aluminum. Today, this process is ranked among the most energy- and CO2intensive industrial processes. Direct carbothermic reduction of alumina has been proposed as an alternative process, which can substantially improve the sustainability of primary aluminum production, leading to energy savings of up to 21% and reduction in greenhouse gas emission of up to 52%, while plant capital costs can be reduced up to 50%. However, processes developed so far suffer from low aluminum yields, primarily due to aluminum carbide and oxycarbide formation and aluminum vaporization phenomena. This article presents a thermodynamic study of the Al–C–O system and a review on the alumina carbothermic processes developed so far.


Author(s):  
Durdana Rais Hashmi ◽  
Akhtar Shareef ◽  
Talha Rehan Qadri ◽  
Muhammad Azam

Present study was carried out to analyze the concentration of the pollutants due to air born particulate matter (PM10) and infectious trace gases and their effects on human health at ten different locations along busy intersections in the commercial, residential and industrial areas of Karachi city. At each selected location, the study was carried out to determine the level of particulate matter and trace gases for a period of 8 h twice in a month during the year 2015. Samples were collected at ten selected locations i.e. Karimabad(C-1), Tibet Centre(C-2), and Liaquatabad(C-3) in commercial areas; PIB Colony(R-1), Nazimabad(R-2) and Gulshan-e-Iqbal(R-3) in residential areas; Siemens G. Belt(I-E1), Naurus G Belt (I-E2), Singer Chowrangi(I-W3) and Chamra Chowrangi(I-W4) in industrial areas of the city. Resultsreceived from different air quality categories were calculated according to National Environmental Quality Standard (NEQS) at selected locations, as in commercial areas showing poor pollution level for trace gases and PM10 due to high traffic density. In Residential areas PIB Colony (R-1) and Gulshan-e-Iqbal (R-3), found under good category with respect to the trace gases and moderate pollution level for the PM10 pollution, having low traffic density whereas Nazimabad(R-2) presents moderate category for trace gases and unhealthy category for PM10 pollution with high traffic density. In industrial areas Singer Chowrangi (I-W3) and Chamra Chowrangi(I-W4) found under moderate pollution level with moderate traffic density, whereas, Siemens G. Belt(I-E1) and Naurus G. Belt(I-E2) locations are represented by moderate pollution values for trace gases and found under poor pollution level for PM10 pollution, may be due to industrial emissions and heavy vehicular emission. Level of PM10 and trace gases at all the selected sites excluding residential areas, exceeds the permissible limits as specified by NEQS.


Sign in / Sign up

Export Citation Format

Share Document