scholarly journals Inhibition of Return (IOR): Is it Consciousness of an Object without Attention or Attention without an Object and Consciousness?

2021 ◽  
Vol 27 (2) ◽  
pp. 293-316
Author(s):  
Jacek Bielas

The crux of the dispute on the mutual relations between attention and consciousness, and to which I have referred in this paper, lies in the question of what can be attended in spatial attention that obviously resonates with the phenomenological issue of intentionality (e.g., the noesis-noema structure). The discussion has been initiated by Christopher Mole. He began by calling for a commonsense psychology, according to which one is conscious of everything that one pays attention to, but one does not pay attention to all the things that one is conscious of. In other words, attention is supposed to be a condition which is sufficient but not necessary for consciousness, i.e., consciousness is a necessary concomitant of attention, but attention is not a necessary concomitant of consciousness. Mole seeks to validate his stance with data from psychology labs. His view is, however, partly confronted, for instance, by Robert Kentridge, Lee de-Wit and Charles Heywood, who used their experimental research on a neurological condition called blindsight as evidence of a dissociation between attention and consciousness, i.e., that visual attention is not a sufficient precondition for visual awareness. In this meta-theoretical state of affairs, I would like to focus on the cognitive phenomenon most often referred to as Inhibition of Return (IOR) and suggest that, following its micro dynamics from the perspective of micro-phenomenology, it can be used to actually showcase all of the options on both sides of the argument. One of my leading goals would be also to follow Mole’s attempt to link attention with agency but where we differ is that I wish to heuristically articulate the matter in terms of Merleau-Ponty’s phenomenological notion of embodied pre-reflective intentionality.

2016 ◽  
Vol 113 (48) ◽  
pp. 13923-13928 ◽  
Author(s):  
Taylor W. Webb ◽  
Kajsa M. Igelström ◽  
Aaron Schurger ◽  
Michael S. A. Graziano

It is now well established that visual attention, as measured with standard spatial attention tasks, and visual awareness, as measured by report, can be dissociated. It is possible to attend to a stimulus with no reported awareness of the stimulus. We used a behavioral paradigm in which people were aware of a stimulus in one condition and unaware of it in another condition, but the stimulus drew a similar amount of spatial attention in both conditions. The paradigm allowed us to test for brain regions active in association with awareness independent of level of attention. Participants performed the task in an MRI scanner. We looked for brain regions that were more active in the aware than the unaware trials. The largest cluster of activity was obtained in the temporoparietal junction (TPJ) bilaterally. Local independent component analysis (ICA) revealed that this activity contained three distinct, but overlapping, components: a bilateral, anterior component; a left dorsal component; and a right dorsal component. These components had brain-wide functional connectivity that partially overlapped the ventral attention network and the frontoparietal control network. In contrast, no significant activity in association with awareness was found in the banks of the intraparietal sulcus, a region connected to the dorsal attention network and traditionally associated with attention control. These results show the importance of separating awareness and attention when testing for cortical substrates. They are also consistent with a recent proposal that awareness is associated with ventral attention areas, especially in the TPJ.


2001 ◽  
Vol 15 (1) ◽  
pp. 22-34 ◽  
Author(s):  
D.H. de Koning ◽  
J.C. Woestenburg ◽  
M. Elton

Migraineurs with and without aura (MWAs and MWOAs) as well as controls were measured twice with an interval of 7 days. The first session of recordings and tests for migraineurs was held about 7 hours after a migraine attack. We hypothesized that electrophysiological changes in the posterior cerebral cortex related to visual spatial attention are influenced by the level of arousal in migraineurs with aura, and that this varies over the course of time. ERPs related to the active visual attention task manifested significant differences between controls and both types of migraine sufferers for the N200, suggesting a common pathophysiological mechanism for migraineurs. Furthermore, migraineurs without aura (MWOAs) showed a significant enhancement for the N200 at the second session, indicating the relevance of time of measurement within migraine studies. Finally, migraineurs with aura (MWAs) showed significantly enhanced P240 and P300 components at central and parietal cortical sites compared to MWOAs and controls, which seemed to be maintained over both sessions and could be indicative of increased noradrenergic activity in MWAs.


2021 ◽  
Author(s):  
◽  
Daniel Jenkins

<p>Multisensory integration describes the cognitive processes by which information from various perceptual domains is combined to create coherent percepts. For consciously aware perception, multisensory integration can be inferred when information in one perceptual domain influences subjective experience in another. Yet the relationship between integration and awareness is not well understood. One current question is whether multisensory integration can occur in the absence of perceptual awareness. Because there is subjective experience for unconscious perception, researchers have had to develop novel tasks to infer integration indirectly. For instance, Palmer and Ramsey (2012) presented auditory recordings of spoken syllables alongside videos of faces speaking either the same or different syllables, while masking the videos to prevent visual awareness. The conjunction of matching voices and faces predicted the location of a subsequent Gabor grating (target) on each trial. Participants indicated the location/orientation of the target more accurately when it appeared in the cued location (80% chance), thus the authors inferred that auditory and visual speech events were integrated in the absence of visual awareness. In this thesis, I investigated whether these findings generalise to the integration of auditory and visual expressions of emotion. In Experiment 1, I presented spatially informative cues in which congruent facial and vocal emotional expressions predicted the target location, with and without visual masking. I found no evidence of spatial cueing in either awareness condition. To investigate the lack of spatial cueing, in Experiment 2, I repeated the task with aware participants only, and had half of those participants explicitly report the emotional prosody. A significant spatial-cueing effect was found only when participants reported emotional prosody, suggesting that audiovisual congruence can cue spatial attention during aware perception. It remains unclear whether audiovisual congruence can cue spatial attention without awareness, and whether such effects genuinely imply multisensory integration.</p>


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Satoshi Shioiri ◽  
Hajime Honjyo ◽  
Yoshiyuki Kashiwase ◽  
Kazumichi Matsumiya ◽  
Ichiro Kuriki

Abstract Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.


Author(s):  
Steven P. Tipper ◽  
Bruce Weaver ◽  
Loretta M. Jerreat ◽  
Arloene L. Burak

2000 ◽  
Vol 12 (supplement 2) ◽  
pp. 106-117 ◽  
Author(s):  
Catherine M. Arrington ◽  
Thomas H. Carr ◽  
Andrew R. Mayer ◽  
Stephen M. Rao

Objects play an important role in guiding spatial attention through a cluttered visual environment. We used event-related functional magnetic resonance imaging (ER-fMRI) to measure brain activity during cued discrimination tasks requiring subjects to orient attention either to a region bounded by an object (object-based spatial attention) or to an unbounded region of space (location-based spatial attention) in anticipation of an upcoming target. Comparison between the two tasks revealed greater activation when attention selected a region bounded by an object. This activation was strongly lateralized to the left hemisphere and formed a widely distributed network including (a) attentional structures in parietal and temporal cortex and thalamus, (b) ventral-stream object processing structures in occipital, inferior-temporal, and parahippocampal cortex, and (c) control structures in medial-and dorsolateral-prefrontal cortex. These results suggest that object-based spatial selection is achieved by imposing additional constraints over and above those processes already operating to achieve selection of an unbounded region. In addition, ER-fMRI methodology allowed a comparison of validly versus invalidly cued trials, thereby delineating brain structures involved in the reorientation of attention after its initial deployment proved incorrect. All areas of activation that differentiated between these two trial types resulted from greater activity during the invalid trials. This outcome suggests that all brain areas involved in attentional orienting and task performance in response to valid cues are also involved on invalid trials. During invalid trials, additional brain regions are recruited when a perceiver recovers from invalid cueing and reorients attention to a target appearing at an uncued location. Activated brain areas specific to attentional reorientation were strongly right-lateralized and included posterior temporal and inferior parietal regions previously implicated in visual attention processes, as well as prefrontal regions that likely subserve control processes, particularly related to inhibition of inappropriate responding.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0212998 ◽  
Author(s):  
Jiaqing Chen ◽  
Jagjot Kaur ◽  
Hana Abbas ◽  
Ming Wu ◽  
Wenyi Luo ◽  
...  

Perception ◽  
2016 ◽  
Vol 46 (1) ◽  
pp. 6-17 ◽  
Author(s):  
N. Van der Stoep ◽  
S. Van der Stigchel ◽  
T. C. W. Nijboer ◽  
C. Spence

Multisensory integration (MSI) and exogenous spatial attention can both speedup responses to perceptual events. Recently, it has been shown that audiovisual integration at exogenously attended locations is reduced relative to unattended locations. This effect was observed at short cue-target intervals (200–250 ms). At longer intervals, however, the initial benefits of exogenous shifts of spatial attention at the cued location are often replaced by response time (RT) costs (also known as Inhibition of Return, IOR). Given these opposing cueing effects at shorter versus longer intervals, we decided to investigate whether MSI would also be affected by IOR. Uninformative exogenous visual spatial cues were presented between 350 and 450 ms prior to the onset of auditory, visual, and audiovisual targets. As expected, IOR was observed for visual targets (invalid cue RT < valid cue RT). For auditory and audiovisual targets, neither IOR nor any spatial cueing effects were observed. The amount of relative multisensory response enhancement and race model inequality violation was larger for uncued as compared with cued locations indicating that IOR reduces MSI. The results are discussed in the context of changes in unisensory signal strength at cued as compared with uncued locations.


Sign in / Sign up

Export Citation Format

Share Document