scholarly journals Characteristics of lime-hemp composite and its use in construction industry

2015 ◽  
Vol 14 (2) ◽  
pp. 011-019
Author(s):  
Przemysław Brzyski ◽  
Stanisław Fic

One of the solutions for reducing energy consumption and carbon dioxide emissions in the construction sector is the use of building materials which have a favorable environmental impact. This is possible to achieve by using plant material, e.g., industrial hemp, which absorb large amounts of carbon dioxide during the growth. Instead of cement as a binder there are used alternatively clay or lime modified with industrial waste in the form of pozzolans. The paper presents the possibility of using industrial hemp in the production of composite based on modified hydrated lime. It describes the basic properties of the sample composites such as compressive strength and thermal conductivity based on literature review. The article describes the way of preparing the mixture and the possibility of using the composite for the construction of walls using different techniques.

2014 ◽  
Vol 805 ◽  
pp. 403-408
Author(s):  
Otávio Luiz do Nascimento ◽  
Alexandra Ancelmo Piscitelli Mansur ◽  
Herman Sander Mansur

Increased public awareness of the threats posed by global warming has led to greater concern over the impact of anthropogenic carbon emissions on the global climate associated with the level of carbon dioxide (CO2) in the atmosphere. Hence, without radical market, technological, and cultural changes, the CO2 concentrations are expected to rise to unbearable levels within just few decades ahead. The production of cement is estimated to be responsible for approximately 5% of the global carbon dioxide emissions. Consequently, aiming for creating a more sustainable world, engineers and scientists must develop and put into use greener building materials that may revolutionize the entire construction industry. This study presents an innovative product for settlement of ceramic tiles as a potential alternative for replacing the conventional cement based mortar in some specific building applications. Essentially, the novel system is based on a double face polymer-adhesive sheet (“cement-free product”). Thus, the main goal was to evaluate the performance and estimate the durability of the developed system. Pull-off tests were conducted in order to compare this new system to the traditional one, with polymer modified mortar, under different procedures and conditions of cure. In addition, both systems were modeled using Finite Element Method (FEM) to obtain the stresses at the interface between ceramic-tile and adhesive. Based on the results, the recommended limits of bond strength for the innovative “cement-free product” of ceramic tile installation could be lower than those specifications used for the equivalent mortar systems. Therefore, these results give some preliminary evidence that by using the new “cement-free” product for ceramic-tile installation may lead to some increase in the productivity and, more important, in the sustainability of a relevant sector of the construction industry.


2020 ◽  
Vol 198 ◽  
pp. 01019
Author(s):  
Xiaowei Gu ◽  
Haofeng Chi ◽  
Jianping Liu ◽  
Peng Liu ◽  
Ziyang Hu ◽  
...  

Recently, the use of sustainable materials has gained increasing attention and recognition, especially in the construction industry. As the main component of concrete, ordinary Portland cement (OPC) is undoubtedly one of the most commonly used building materials in the world. However, the manufacture of OPC is accompanied by environmental and ecological problems such as the release of carbon dioxide. According to estimates, about 5%-8% of the world think that carbon dioxide emissions come from the OPC industry, so it is urgent to use fly ash, tailings, slag and other industrial solid waste to produce cement instead of ordinary Portland cement.This article summarizes the achievements of the predecessors and outlines the influence of different iron tailings and iron tailings content on the mechanical properties and durability of concrete.


2019 ◽  
Vol 9 (20) ◽  
pp. 4333 ◽  
Author(s):  
Inkwan Paik ◽  
Seunguk Na

Global warming is now considered to be one of the greatest challenges worldwide. International environmental agreements have been developed in response to climate change since the 1970s. The construction industry is considered one of the main contributors to global warming. In order to mitigate global warming effects, the construction industry has been exploring various approaches to mitigate the impacts of carbon dioxide emissions over the entire life cycle of buildings. The application of different structural systems is considered a means of reducing the carbon dioxide emissions from building construction. The purpose of this research is to assess the environmental performance of three different slab systems during the construction phase. In this study, a process-based life cycle assessment (LCA) method was applied in order to evaluate the level of performance of the three slab systems. The results showed total CO2 emissions of 3,275,712, 3,157,260, and 2,943,695 kg CO2 eq. for the ordinary reinforced concrete slab, flat plate slab, and voided slab systems, respectively. The manufacturing of building materials is by far the main contributor to CO2 emissions, which indicate 3,230,945, 3,117,203, and 2,905,564 kg CO2 eq., respectively. Comparing the building materials in the three slab systems, reinforcing bars and forms were significant building materials to reduce the CO2 emissions in the flat plate slab and voided slab systems. In this study, reinforcing bars were the main contributor to lowering the carbon dioxide emissions in the flat plate slab and voided slab systems. The results of this study show that amongst all the three different slab systems, the voided slab system shows the greatest reduction potential. Moreover, replacing the ordinary reinforced concrete slab system by alternative methods would make it possible to reduce the carbon dioxide emissions in building projects.


2019 ◽  
Vol 11 (13) ◽  
pp. 3571 ◽  
Author(s):  
Inkwan Paik ◽  
Seunguk Na

The construction industry not only consumes a lot of energy but also emits large volumes of carbon dioxide. Most countries have established target reduction values of the carbon dioxide emissions to alleviate environmental burdens and promote sustainable development. The reduction in carbon dioxide emissions in the construction industry has been taking place in various ways as buildings produce large quantities of the carbon dioxide over their construction life cycle. The aim of this study is to assess and compare the carbon dioxide emissions of an ordinary reinforced concrete slab and the voided slab system applied to a case study involving a commercial-residential complex building in South Korea. Process-based life-cycle assessment (LCA) is adopted to compute the carbon dioxide emissions during the construction phase, which includes all processes from material production to the end of construction. The results indicate that the total CO2 emissions are 257,230 and 218,800 kg CO2 for the ordinary reinforced concrete slab and the voided slab system, respectively. The highest contributor to CO2 reduction is the embodied carbon dioxide emissions of the building materials, which accounts for 34,966 kg CO2. The second highest contributor is the transportation of the building materials, accounting for 3417 kg CO2.


Respuestas ◽  
2017 ◽  
Vol 22 (1) ◽  
pp. 6 ◽  
Author(s):  
Alejandra Sarabia-Guarin ◽  
Jorge Sánchez-Molina ◽  
Juan Carlos Leyva-Díaz

Antecedentes: El sector de la construcción es uno de los sectores económicos en Colombia con mayor crecimiento, generando grandes cantidades de residuos como producto del proceso de construcción, y/o demolición, o en su defecto en la fabricación de los materiales de construcción. Objetivo: facilitar el acceso a información académicocientífica actualizada sobre reciclaje de residuos industriales y su aplicación en la fabricación de materiales de construcción. Así mismo se emplea el término de economía circular, el cual hace referencia a la integración de las actividades de reducción (consumo de energía y residuos), reutilización y recuperación durante la producción, el intercambio y consumo. Conclusión: además de reducir la contaminación generada por los residuos de los sectores productivos, con el aprovechamiento de los subproductos ha sido posible mejorar ciertas propiedades tecnológicas de estos materiales de construcción.Palabras Clave: economía circular, materiales de construcción, nutriente tecnológico, reciclaje, residuos industriales.AbstractBackground: The construction sector is one of the economic sectors with the highest growth in Colombia, generating large amounts of waste as a result of the construction process, and / or demolition, or otherwise in the building material manufacturing. Objective: to facilitate the access to updated academic-scientific information on recycling of industrial waste and its application for the building material manufacturing. Moreover, the concept of circular economy is used, which refers to the integration of the reduction activities (energy consumption and waste),reuse and recycling during the production, exchange and consumption. Conclusion: in addition to the reduction of the pollution generated by waste from the productive sectors, certain technological properties of these building materials have been improved through the use of waste. Keywords: circular economy, building materials, technological nutrient, recycling, industrial waste.


The key players in the construction industry around the globe are very enthusiastic in producing better construction materials that are cost-effective, durable, excellent thermal insulation, lightweight and long lasting without jeopardizing the environment. One of the best ways in producing such building materials are by incorporating industrial waste materials such as Empty Fruit Bunch (EFB) fiber in foamed concrete (FC). In recent years, the spotlight has been given towards the use of natural fiber reinforced concrete-based materials especially in Malaysia in a quest of economic and environmental upkeep particularly in the construction sector itself. Hence, this study intended to recognize the influence of Empty Fruit Bunch (EFB) fiber of four different contents (0.15%, 0.30%, 0.45% and 0.60 %) by mix volume on thermal properties of FC. There were three densities of 800kg/m3 , 1100kg/m3 and 1400kg/m3 we cast and tested. The mix design of FC (sand: cement: water) is fixed at the ratio of 1:1.5:0.45. The investigation focuses on three parameters which were thermal conductivity, thermal diffusivity and specific heat capacity. Results showed that the addition of EFB in FC plays an important role to improve the thermal performance holistically. The results demonstrated a great potential possesses by the EFB fiber to be utilized in cement-based materials such as the FC mix which is beneficial in reducing the thermal property or the transfer of heat in a produced concrete.


Author(s):  
B. I. Dikhanbaev ◽  
◽  
A. B. Dikhanbaev ◽  

The production activity of mankind using high-ash fossil fuels for electricity generation is steadily increasing ash waste and carbon dioxide emissions into the environment. The article proposes a variant of wasteless combustion of Ekibastuz coal in a melting reactor installed under the boiler; it is envisaged to obtain, in addition to steam of energy parameters, a melt suitable for the production of building materials, sublimates of zinc, gallium and germanium, to reduce emissions of "CO2" into the atmosphere and return to the process a part of carbon in "CO2". An energy-saving thermal diagram of a power plant boiler has been developed on the basis of the proposed technology for the reduction of "СО2, Н2О" of reactor waste gases with zinc vapor to "СО, Н2". The resulting excessive hydrogen will be used to displace elemental carbon from "CO". The spent reagent, zinc oxide, after recovering into zinc will be used again in the process. In case of implementation, CO2 emissions into the atmosphere will be cut up to 50%, the expected payback period of the proposed system will be 1.0 - 1.5 years.


2020 ◽  
Author(s):  
Yulia Orlovska ◽  
◽  
Daria Havrylenko ◽  

The main international trends in the world market of construction materials and services have been analyzed. The dynamics of world GDP and exports of construction services for the period 2000-2019 has been studied and a conclusion is made on the impact of economic crises on their growth rates. It has been determined that the dynamics of world exports of construction services is characterized by high instability with peaks of growth and decline, and is more sensitive than GDP growth. It has been noted that overcoming the crisis in the export sector of construction services takes more time and occurs with an approximate two-year time lag compared to GDP dynamics. The share of the construction industry in the world GDP by the degree of development has been analyzed. The reasons for the decline in the share of the construction industry in countries with economies in transition have been substantiated. It has been noted that in the developed countries the share of the construction sector is accounted for by real estate management activities related to maintenance, rent, purchase and sale and other transactions with land and real estate. The forecast values of growth of the market of building materials and services till 2030 have been given. The essence of the term «wide construction» has been revealed and the structure of this sector in different countries of the world is shown. The main exporters in the world construction market have been given and the structural distribution of the largest construction companies in the world ranking by country of origin has been analyzed. The dynamics of income level in the construction industry market for the period 2011-2018 has been studied. It has been noted that an important area of the construction sector is the market of roofing and facade materials and the world's largest companies for the production of this type of construction materials have been revealed. Conclusions on the essence of global transformations of the market of building materials and services have been made, and also it has been defined that they are caused by transnationalization of corporate structure of the market, influence of scientific and technical progress and information and communication technologies on world centers as well as the emergence of the concept of «sustainable construction» in the course of humanity for sustainable development.


Author(s):  
Ilija Gubic ◽  
Dheeraj Arrabothu ◽  
John Bugirimfura ◽  
Laurel Hasabamagara ◽  
Irenee Isingizwe ◽  
...  

Development countries in Africa will see 75% increase of its current building stock until 2060 due to the economic development, rapid urbanization and population growth. Rwanda?s Third National Communication under the United Nations Framework Convention on Climate Change estimates that the carbon dioxide emissions from buildings will increase by 574% by 2050 in the business as usual scenario. The aim of this paper puts sustainable architecture and green buildings in a context of rapidly urbanizing Rwanda, showing five recently constructed brick buildings that exploit the culture while meeting the sustainability demands of the 21st century. Global sustainability agendas are advocating for the use of brick for its durability, quality, with environmental, economic, and social benefits for construction sector. This paper provides insights on the policies, such as the Green Building Minimum Compliance System, advocating for the use of brick as a sustainable construction material. Despite the rapid urbanization in Rwanda, the existing sustainable construction practices help in reducing carbon dioxide emissions, while this paper also documents results on social and economic perspectives for the community from construction sector.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 285
Author(s):  
Roman Pahomov ◽  
Oleksandr Zyma ◽  
Evgen Dyachenko

Industrial accidents with fatal consequences in Ukraine were investigated in the paper. International experience of injury prevention was briefly analyzed in the article. The dynamics of Industrial accidents with fatal consequences in Ukraine from 1992 to 2016 was considered. The main reasons that significantly affected the level of injury in the construction industry and in the building materials industry from 2013 to 2016 were identified and analyzed. Methods of analysis of accidents and occupational diseases at the workplace were considered. The forecast of accidents with fatal consequences for three years from 2017 to 2019, with the usage of an one-factor forecast model on the basis of a trend logarithmic curve was developed. Recommendations for the prevention and reduction of the level of injury at the enterprises of the construction industry were developed.  


Sign in / Sign up

Export Citation Format

Share Document