scholarly journals Thermal Properties of Foamed Concrete with Addition of Empty Fruit Bunch (EFB) Fiber

The key players in the construction industry around the globe are very enthusiastic in producing better construction materials that are cost-effective, durable, excellent thermal insulation, lightweight and long lasting without jeopardizing the environment. One of the best ways in producing such building materials are by incorporating industrial waste materials such as Empty Fruit Bunch (EFB) fiber in foamed concrete (FC). In recent years, the spotlight has been given towards the use of natural fiber reinforced concrete-based materials especially in Malaysia in a quest of economic and environmental upkeep particularly in the construction sector itself. Hence, this study intended to recognize the influence of Empty Fruit Bunch (EFB) fiber of four different contents (0.15%, 0.30%, 0.45% and 0.60 %) by mix volume on thermal properties of FC. There were three densities of 800kg/m3 , 1100kg/m3 and 1400kg/m3 we cast and tested. The mix design of FC (sand: cement: water) is fixed at the ratio of 1:1.5:0.45. The investigation focuses on three parameters which were thermal conductivity, thermal diffusivity and specific heat capacity. Results showed that the addition of EFB in FC plays an important role to improve the thermal performance holistically. The results demonstrated a great potential possesses by the EFB fiber to be utilized in cement-based materials such as the FC mix which is beneficial in reducing the thermal property or the transfer of heat in a produced concrete.

2020 ◽  
Author(s):  
Yulia Orlovska ◽  
◽  
Daria Havrylenko ◽  

The main international trends in the world market of construction materials and services have been analyzed. The dynamics of world GDP and exports of construction services for the period 2000-2019 has been studied and a conclusion is made on the impact of economic crises on their growth rates. It has been determined that the dynamics of world exports of construction services is characterized by high instability with peaks of growth and decline, and is more sensitive than GDP growth. It has been noted that overcoming the crisis in the export sector of construction services takes more time and occurs with an approximate two-year time lag compared to GDP dynamics. The share of the construction industry in the world GDP by the degree of development has been analyzed. The reasons for the decline in the share of the construction industry in countries with economies in transition have been substantiated. It has been noted that in the developed countries the share of the construction sector is accounted for by real estate management activities related to maintenance, rent, purchase and sale and other transactions with land and real estate. The forecast values of growth of the market of building materials and services till 2030 have been given. The essence of the term «wide construction» has been revealed and the structure of this sector in different countries of the world is shown. The main exporters in the world construction market have been given and the structural distribution of the largest construction companies in the world ranking by country of origin has been analyzed. The dynamics of income level in the construction industry market for the period 2011-2018 has been studied. It has been noted that an important area of the construction sector is the market of roofing and facade materials and the world's largest companies for the production of this type of construction materials have been revealed. Conclusions on the essence of global transformations of the market of building materials and services have been made, and also it has been defined that they are caused by transnationalization of corporate structure of the market, influence of scientific and technical progress and information and communication technologies on world centers as well as the emergence of the concept of «sustainable construction» in the course of humanity for sustainable development.


Author(s):  
Rijk Block ◽  
Barbara Kuit ◽  
Torsten Schröder ◽  
Patrick Teuffel

<p>The structural engineering community has a strong responsibility to contribute to a more efficient use of natural resources. Nowadays the construction industry is by far the most resource intense industry sector, approximately 40-50% of all primary raw materials are used, which raises the question about the architects and engineer’s accountability. In this context and as a result of the Paris Climate agreement the Dutch government defined the program “Nederland Circulair in 2050”, which states the ambition to use 50% less primary materials in 2030 and to have a full circular economy in 2050.</p><p>One possible approach to achieve these ambitious goals is the application of renewable, bio-based materials in the built environment and to replace traditional, typically cement-based, materials. Already in the past natural building materials, such as timber and bamboo have been used widely, but in recent years new materials came up and provide new opportunities to be used in the construction industry. The authors explored various alternatives, such as hemp and flax fibres, mycelium and lignin-based fibres for composite materials, which will be described with various experimental and realised case studies.</p>


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


2021 ◽  
Vol 36 (2) ◽  
pp. 182-191
Author(s):  
Ljiljana Kljajevic ◽  
Miljana Mirkovic ◽  
Sabina Dolenec ◽  
Katarina Ster ◽  
Mustafa Hadzalic ◽  
...  

The potential re-use of red mud in the building and construction industry has been the subject of research of many scientists. The presented research is a contribution to the potential solution of this environmental issue through the synthesis of potential construction materials based on red mud. A promising way of recycling these secondary raw materials is the synthesis of alkali-activated binders or alkali activated materials. Alkali-activated materials or inorganic binders based on red mud are a new class of materials obtained by activation of inorganic precursors mainly constituted by silica, alumina and low content of calcium oxide. Since red mud contains radioactive elements like 226Ra and 232Th, this may be a problem for its further utilization. The content of naturally occurring radionuclides in manufactured material products with potential application in the building and construction industry is important from the standpoint of radiation protection. Gamma radiation of the primordial radionuclides, 40K and members of the uranium and thorium series, increases the external gamma dose rate. However, more and more precedence is being given to limiting the radiological dose originating from building materials on the population these days. The aim of this research was to investigate the possible influence of alkali activation-polymerization processes on the natural radioactivity of alkali activated materials synthesized by red mud (BOKSIT a. d. Milici, Zvornik, Bosnia and Herzegovina) and their structural properties. This research confirmed that during the polymerization process the natural radioactivity was reduced, and that the process of alkali activation of raw materials has an influence on natural radioactivity of synthesized materials.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 285
Author(s):  
Roman Pahomov ◽  
Oleksandr Zyma ◽  
Evgen Dyachenko

Industrial accidents with fatal consequences in Ukraine were investigated in the paper. International experience of injury prevention was briefly analyzed in the article. The dynamics of Industrial accidents with fatal consequences in Ukraine from 1992 to 2016 was considered. The main reasons that significantly affected the level of injury in the construction industry and in the building materials industry from 2013 to 2016 were identified and analyzed. Methods of analysis of accidents and occupational diseases at the workplace were considered. The forecast of accidents with fatal consequences for three years from 2017 to 2019, with the usage of an one-factor forecast model on the basis of a trend logarithmic curve was developed. Recommendations for the prevention and reduction of the level of injury at the enterprises of the construction industry were developed.  


2015 ◽  
Vol 14 (2) ◽  
pp. 011-019
Author(s):  
Przemysław Brzyski ◽  
Stanisław Fic

One of the solutions for reducing energy consumption and carbon dioxide emissions in the construction sector is the use of building materials which have a favorable environmental impact. This is possible to achieve by using plant material, e.g., industrial hemp, which absorb large amounts of carbon dioxide during the growth. Instead of cement as a binder there are used alternatively clay or lime modified with industrial waste in the form of pozzolans. The paper presents the possibility of using industrial hemp in the production of composite based on modified hydrated lime. It describes the basic properties of the sample composites such as compressive strength and thermal conductivity based on literature review. The article describes the way of preparing the mixture and the possibility of using the composite for the construction of walls using different techniques.


2018 ◽  
Vol 149 ◽  
pp. 01079
Author(s):  
Abbou Mohammed ◽  
Moulay Omar Hassan ◽  
Semcha Abdélaziz ◽  
Kazi-Aoual Fatiha

In the context of sustainable local development of the Adrar region, one of the largest regions in the Algerian Sahara. The search for local useful substances has been initiated by the Algerian state to cover the need for building materials in the construction industry. However, from a geological point of view, the Adrar zone is located in the extension of the primary chain of the Ougarta which separates two sedimentary basins of Reggane and Timimoun, as well as the basin of Sbâa. In this context, an experimental study is focused on the characterization of clay deposits, with a view to their valorization in the construction materials industry (ceramics) sector, with the aim of contributing to the use of local materials.


Author(s):  
Marina Mishlanova ◽  
A. Veleva

The building materials market research is a complex process, one of the main problems of which is the collection and processing of information. The article presents a characteristic of the methods of analysis of this market. The aim of the study was to develop an integrated approach and methods for analyzing the building materials market to ensure the development of the construction materials sector and the construction industry as a whole. The analysis made it possible to develop indirect methods of market research based on indicators of realized demand and realized supply. The triune methodical complex includes: the method of material costs of the executor of construction and installation works, the method of economic results of the manufacturer of building materials and the analysis of the market of final construction products. The proposed indirect methods, combined with direct methods, constitute a system for researching the construction materials market.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
João de Lassio ◽  
Josué França ◽  
Kárida Espirito Santo ◽  
Assed Haddad

The construction industry is increasingly concerned with improving the social, economic, and environmental indicators of sustainability. More than ever, the growing demand for construction materials reflects increased consumption of raw materials and energy, particularly during the phases of extraction, processing, and transportation of materials. This work aims to help decision-makers and to promote life cycle thinking in the construction industry. For this purpose, the life cycle assessment (LCA) methodology was chosen to analyze the environmental impacts of building materials used in the construction of a residence project in São Gonçalo, Rio de Janeiro, Brazil. The LCA methodology, based on ISO 14040 and ISO 14044 guidelines, is applied with available databases and the SimaPro program. As a result, this work shows that there is a substantial waste of nonrenewable energy, increasing global warming and harm to human health in this type of construction. This study also points out that, for this type of Brazilian construction, ceramic materials account for a high percentage of the mass of a total building and are thus responsible for the majority of environmental impacts.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 63
Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
Irini Djeran-Maigre ◽  
...  

The palm oil industry is the leading source of palm oil waste fibers. The disposal of palm oil waste fibers by burning or dumping causes environmental issues such as the emission of CO2 and a diminution in soil fertility. Natural fiber reuse in construction materials such as concrete, mortar and adobe bricks as reinforcement provides a possible eco-friendly solution for fiber waste management. Palm oil flower fibers (POFL) obtained from palm oil empty fruit bunches and palm oil fruit fibers (POFR) obtained from palm oil fruit are two important types of palm oil fibers. Valorization of palm oil fibers requires a detailed analysis of their physical, chemical and mechanical characteristics. In this research, tropical palm oil flower and palm oil fruit fibers from Mexico were studied. Fiber extraction, preparation and testing were performed to observe their characteristics, which include water absorption, density, length, section estimation, chemical composition, thermal conductivity, thermal analysis (ATG) and tensile strength. The length, diameter and density of natural fibers have a significant influence on the strength and quality of composite materials. The characteristics of fibers vary with their chemical composition. Mechanical testing of palm oil fibers indicates a large variation in the tensile strength of palm oil flower and fruit fibers. Both palm oil flower and palm oil fruit fibers exhibit bilinear tensile load–deflection behavior associated with the alignment of cellulose along their fiber axis. The thermal characteristics of fibers indicate low thermal stability and thermal conductivity, which are essential for their use in building materials.


Sign in / Sign up

Export Citation Format

Share Document