scholarly journals Development of an Aerospike Nozzle for a High Performance Green Hybrid Propulsion (Hpghp) System for Small Satellites

Author(s):  
Whitmore Stephen A
Author(s):  
Babak Aryana

This two-part article introduces a novel hybrid propulsion system based on the DEA compressor. The system encompasses a Pulse Detonation TurboDEA as the master engine that supplies several full-electric ancillary thrusters called DEAThruster. The system, called the propulsion set, can be categorized as a distributed propulsion system based on the design mission and number of ancillary thrusters. Part A of this article explains the design process comprising intake, compressor, detonation process, diffuser, axial turbine, and the exit nozzle. The main target is to design a high-performance low emission propulsion system capable of serving in a wide range of altitudes and flight Mach numbers that covers altitudes up to 20,000 m and flight Mach number up to the hypersonic edge. Designing the propulsion set, the design point is considered at the static condition in the sea level. Design results show the propulsion set can satisfy all requirements necessary for its mission.


Author(s):  
Padmaja Kuruba ◽  
A. V. Sutagundar

There is a great demand in space and earth observations applications. Traditional satellite missions have complex design architecture involving high cost in design, operation, launch and maintenance. Thus single large satellite is replaced by multiple, small satellites with distributed network, collaboratively performing the same functionality of large satellite. This has been motivated researchers to explore the application of terrestrial Wireless Sensor Network (WSN) to space. The main objective of using space based WSN is to have full power of remote sensing capabilities at all the relevant time horizons and geographical scales with high performance and low cost. It also strives for an optimal solution that gratifies the standards, sizes, air interfaces, network architecture, access schemes, fault tolerance, operating system, hardware components of on-board diagnostics etc. This chapter discusses the characteristics and challenges of Space-Based Wireless Sensor Network (SWSN).


Author(s):  
Young-Wan Choi ◽  
Seung-Uk Yang ◽  
Myung-Seok Kang ◽  
Ee-Eul Kim

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 197
Author(s):  
Fabrizio Stesina

The release and retrieval of a CubeSat from a big spacecraft is useful for the external inspection and monitoring of the big spacecraft. However, docking maneuvers during the retrieval are challenging since safety constraints and high performance must be achieved, considering the small dimensions and the actual small satellites technology. The trajectory control is crucial to have a soft, accurate, quick, and propellant saving docking. The present paper deals with the design of a tracking model predictive controller (TMPC) tuned to achieve the stringent docking requirements for the retrieval of a CubeSat within the cargo bay of a large cooperative vehicle. The performance of the TMPC is verified using a complex model that includes non-linearities, uncertainties of the CubeSat parameters, and environmental disturbances. Moreover, 300 Monte Carlo runs demonstrate the robustness of the TMPC solution.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 169
Author(s):  
Ahmed E. S. Nosseir ◽  
Angelo Cervone ◽  
Angelo Pasini

Green propellants are currently considered as enabling technology that is revolutionizing the development of high-performance space propulsion, especially for small-sized spacecraft. Modern space missions, either in LEO or interplanetary, require relatively high-thrust and impulsive capabilities to provide better control on the spacecraft, and to overcome the growing challenges, particularly related to overcrowded LEOs, and to modern space application orbital maneuver requirements. Green monopropellants are gaining momentum in the design and development of small and modular liquid propulsion systems, especially for CubeSats, due to their favorable thermophysical properties and relatively high performance when compared to gaseous propellants, and perhaps simpler management when compared to bipropellants. Accordingly, a novel high-thrust modular impulsive green monopropellant propulsion system with a micro electric pump feed cycle is proposed. MIMPS-G500mN is designed to be capable of delivering 0.5 N thrust and offers theoretical total impulse Itot from 850 to 1350 N s per 1U and >3000 N s per 2U depending on the burnt monopropellant, which makes it a candidate for various LEO satellites as well as future Moon missions. Green monopropellant ASCENT (formerly AF-M315E), as well as HAN and ADN-based alternatives (i.e., HNP225 and LMP-103S) were proposed in the preliminary design and system analysis. The article will present state-of-the-art green monopropellants in the (EIL) Energetic Ionic Liquid class and a trade-off study for proposed propellants. System analysis and design of MIMPS-G500mN will be discussed in detail, and the article will conclude with a market survey on small satellites green monopropellant propulsion systems and commercial off-the-shelf thrusters.


2019 ◽  
Vol 70 (10) ◽  
pp. 3508-3511

This paper presents mainly a new HPC/CFD numerical simulation for airflow around the rigid sail for Lupo90 boat in Constanta harbor conditions. The first part of the work displays the performed numerical simulation in turbulent flow based on the 3D sail. The presented model has high capacity of towing and it can be installed onboard existing ships. This is the result of the HPC (high performance computing) and CFD (computational fluid dynamics) which is a mixture of actual hardware and software at high level computing power applied to Lupo90 boat. All data for rigid sail is analyzed in a turbulent flow in commercial fluid dynamics ANSYS module CFX available at Naval Academy and the work was supported by Romanian Ministry of Defense. Sail performance studying in turbulent flow for the rigid sail onboard ships was always a huge computational difficulty and the HPC/CFD analysis available can solve tricky tasks. The most common unconventional systems are hybrid propulsion systems are using fossil fuel and wind energy, this type of HPC/CFD method for propulsion investigation is now implemented by craft constructor CirusPlast SRL. Keywords: numerical simulation, turbulent airflow, sail propulsion


Sign in / Sign up

Export Citation Format

Share Document