scholarly journals Use of Imaging Techniques to Assess Skin Wound Healing for Tissue Engineering and Regenerative Medicine

Author(s):  
Feldman Dale
2020 ◽  
Vol 52 (10) ◽  
pp. 1102-1110
Author(s):  
Zhaodong Wang ◽  
Guangliang Zhang ◽  
Yingying Le ◽  
Jihui Ju ◽  
Ping Zhang ◽  
...  

Abstract Skin epidermal stem cells (EpSCs) play an important role in wound healing. Quercetin is a phytoestrogen reported to accelerate skin wound healing, but its effect on EpSCs is unknown. In this study, we investigated the effect of quercetin on human EpSC proliferation and explored the underlying mechanisms. We found that quercetin at 0.1~1 μM significantly promoted EpSC proliferation and increased the number of cells in S phase. The pro-proliferative effect of quercetin on EpSCs was confirmed in cultured human skin tissue. Mechanistic studies showed that quercetin significantly upregulated the expressions of β-catenin, c-Myc, and cyclins A2 and E1. Inhibitor for β-catenin or c-Myc significantly inhibited quercetin-induced EpSC proliferation. The β-catenin inhibitor XAV-939 suppressed quercetin-induced expressions of β-catenin, c-Myc, and cyclins A2 and E1. The c-Myc inhibitor 10058-F4 inhibited the upregulation of c-Myc and cyclin A2 by quercetin. Pretreatment of EpSCs with estrogen receptor (ER) antagonist ICI182780, but not the G protein-coupled ER1 antagonist G15, reversed quercetin-induced cell proliferation and upregulation of β-catenin, c-Myc, and cyclin A2. Collectively, these results indicate that quercetin promotes EpSC proliferation through ER-mediated activation of β-catenin/c-Myc/cyclinA2 signaling pathway and ER-independent upregulation of cyclin E1 and that quercetin may accelerate skin wound healing through promoting EpSC proliferation. As EpSCs are used not only in clinic to treat skin wounds but also as seed cells in skin tissue engineering, quercetin is a useful reagent to expand EpSCs for basic research, skin wound treatment, and skin tissue engineering.


2022 ◽  
Vol 13 ◽  
pp. 204173142110630
Author(s):  
Peng Chang ◽  
Shijie Li ◽  
Qian Sun ◽  
Kai Guo ◽  
Heran Wang ◽  
...  

Traditional tissue engineering skin are composed of living cells and natural or synthetic scaffold. Besize the time delay and the risk of contamination involved with cell culture, the lack of autologous cell source and the persistence of allogeneic cells in heterologous grafts have limited its application. This study shows a novel tissue engineering functional skin by carrying minimal functional unit of skin (MFUS) in 3D-printed polylactide-co-caprolactone (PLCL) scaffold and collagen gel (PLCL + Col + MFUS). MFUS is full-layer micro skin harvested from rat autologous tail skin. 3D-printed PLCL elastic scaffold has the similar mechanical properties with rat skin which provides a suitable environment for MFUS growing and enhances the skin wound healing. Four large full-thickness skin defects with 30 mm diameter of each wound are created in rat dorsal skin, and treated either with tissue engineering functional skin (PLCL + Col + MFUS), or with 3D-printed PLCL scaffold and collagen gel (PLCL + Col), or with micro skin islands only (Micro skin), or without treatment (Normal healing). The wound treated with PLCL + Col + MFUS heales much faster than the other three groups as evidenced by the fibroblasts migration from fascia to the gap between the MFUS dermis layer, and functional skin with hair follicles and sebaceous gland has been regenerated. The PLCL + Col treated wound heals faster than normal healing wound, but no skin appendages formed in PLCL + Col-treated wound. The wound treated with micro skin islands heals slower than the wounds treated either with tissue engineering skin (PLCL + Col + MFUS) or with PLCL + Col gel. Our results provide a new strategy to use autologous MFUS instead “seed cells” as the bio-resource of engineering skin for large full-thickness skin wound healing.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Shima Tavakoli ◽  
Marta A. Kisiel ◽  
Thomas Biedermann ◽  
Agnes S. Klar

The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.


Biomedicines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 25
Author(s):  
Elena Alpeeva ◽  
Yury Sukhanov ◽  
Ekaterina Vorotelyak

This review describes achievements of Russian cell-based regenerative medicine in different periods of time depending on the legislation and politics, and future prospects for its commercialization and wide application with an emphasis on products devised for skin regeneration. The world’s experience in tissue engineering began with the development of living skin equivalents, utilizing a biopolymer matrix and cells at the very beginning of the 1980s. During this period, the USSR kept abreast with the times and also conducted studies on skin wound healing, implementing modern cell techniques. However, there soon emerged a gap between scientific advancement and practical application. After the breakup of the USSR, there were no institutions that could implement scientific inventions into full-scale manufacturing for clinical application. At the same time, accumulating scientific and practical experience allowed for the maintenance of biomedical research and its readiness for market entry at present. Recently developed legislation opens up new opportunities in this field in Russia. There are a growing number of studies on the development of novel products for regenerative medicine, bringing hope for its rapid progress.


Sign in / Sign up

Export Citation Format

Share Document