Effect of rotating magnetic field on temperature field and flow field of Ga1−x In x Sb crystal growth with traveling heater method

2020 ◽  
Vol 59 (5) ◽  
pp. 055503 ◽  
Author(s):  
Xiang Li ◽  
Zheng Zhang ◽  
Guofang He ◽  
Donghai Yang ◽  
Weicai Zhang ◽  
...  
2014 ◽  
Vol 790-791 ◽  
pp. 384-389
Author(s):  
Dirk Räbiger ◽  
Bernd Willers ◽  
Sven Eckert

This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations. Melt stirring has been realized by utilizing a rotating magnetic field. In a second step directional solidification of AlSi7 alloys from a water-cooled copper chill was carried out to verifythe effect of a certain flow field on the solidification process and on the resulting mechanical properties. The solidified structure was reviewed in comparison to an unaffected solidified ingot. Measurements of the phase distribution, the grain size, the hardness and the tensile strength were realized. Our results demonstrate the potential of magnetic fields to control the grain size, the formation of segregation freckles and the mechanical properties. In particular, time–modulated rotating fields show their capability to homogenize both the grain size distribution and the corresponding mechanical properties.


2006 ◽  
Vol 129 (2) ◽  
pp. 241-243 ◽  
Author(s):  
X. Wang ◽  
N. Ma

During the vertical Bridgman process, a single semiconductor crystal is grown by the solidification of an initially molten semiconductor contained in an ampoule. The motion of the electrically conducting molten semiconductor can be controlled with an externally applied magnetic field. This paper treats the flow of a molten semiconductor and the dopant transport during the vertical Bridgman process with a periodic transverse or rotating magnetic field. The frequency of the externally applied magnetic field is sufficiently low that this field penetrates throughout the molten semiconductor. Dopant distributions in the crystal are presented.


2010 ◽  
Vol 97-101 ◽  
pp. 2797-2800
Author(s):  
Da Pei Tang ◽  
Qing Gao ◽  
Ying Hui Li ◽  
Fan Xiu Lu

A multiple fields’ coupled model of new magnetic controlled DC plasma torch, which was used for CVD diamond film, was presented. In this model, the effects of electric field and magnetic field on the flow field and temperature field were taken into account, and the fluid dynamics equations were modified by the addition of some source terms relating to electromagnetic field, such as Lorentz force, joule heating, and radiative cooling. Conversely, the generalized ohm’s law was used to solve the current density, which reflected the effects of flow field and temperature field on the electric field and magnetic field. In addition, the rest Maxwell’s equations and external solenoid magnetic field equation were also modeled. In order to know the effect of external magnetic field on the torch, the current intensity of external solenoid was chosen to simulate its influence on the flow and heat transfer in the torch. Results show that external magnetic field plays a part in stirring the plasma, which is advantageous for the preparation of diamond film. The larger the external solenoid current intensity is, the better the uniformity of the temperature and velocity of plasma is.


Author(s):  
Yue Huang ◽  
Kenneth E. Davis ◽  
Brent C. Houchens

Flow control during bulk melt crystal growth is desirable for producing ternary alloy semiconductors with tunable lattice parameters and bandgap energy, providing custom materials for specific electro-optical applications. Segregation between constituent elements in the melt, be it through preferential rejection at the growth front or density variations, limits the growth rate and the uniformity in the crystal. External alternating magnetic fields are employed to stir the electrically conducting melt. While mixing is desired, turbulent flow is generally not. Precise control is required to maintain a laminar melt flow while providing sufficient mixing. Stirring via a rotating magnetic field (RMF) and a three-coil traveling magnetic field (TMF) is modeled and compared for a cylindrical melt confined in an ampule. The RMF imposes a body force in the azimuthal direction while the TMF induces primarily radial and axial body forces. The magnetic fields are effectively decoupled from the flow fields due to the small magnetic Reynolds number. Therefore, the magnetic fields are first determined using a finite element solver. The flows are then solved by a spectral element model of the Navier-Stokes equations including an electromagnetic body force term.


Sign in / Sign up

Export Citation Format

Share Document