Design of Hybrid Portable Underwater Turbine Hydro and Solar Energy Power Plants: Innovation to Use Underwater and Solar Current as Alternative Electricity in Dusun Dongol Sidoarjo

Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

The need for electrical energy in Indonesia continues to increase every year. In line with the increase in the electrification ratio to 100% in 2050, the demand for electrical energy is projected to reach 7 times, namely 1,611 TWh. To meet electricity needs, the government has created a 35 GW program, but one of the largest contributors to power generation fuel is coal with a share of 58% or around 50 GW which is estimated to be exhausted within the next 68 years. For this reason, innovations are needed in terms of fulfilling electrical energy by utilizing renewable energy potential, one of which is hydro energy, which is 45,379 MW from a total resource of 75,091 MW. Therefore, from this potential, innovations related to renewable energy have been created, namely the Hybrid Portable Underwater Turbine Hydro and Solar Energy hybrid power plant. This power plant uses an undersea current as a propulsion which is hybridized with solar power to increase the production of electrical energy. This power plant has the advantage that there is an Underwater turbine design that is resistant to underwater flow and a water flow direction to increase the work efficiency of the underwater turbine. From the test results, the portable Underwater turbine hydro produces 950 W in a day. Solar panels produce 65.6 Watts a day. The total hybrid that can be produced is 1.02 kW a day. In its implementation it can supply loads of up to 900 (VA) such as lamps, fans, TV, etc. This hybrid power plant can be a solution to help meet electricity needs in the area around Dusun Dongol, Sidoarjo through alternative electrical energy innovations.

2019 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Gordon Arifin Sinaga ◽  
I Made Mataram ◽  
Tjok Gede Indra Partha

Renewable energy is energy that comes from natural processes that will not be exhausted and sustainable if managed properly. In its use, to maintain the continuity of the availability of electrical energy maximally, it is necessary to combine several types of power plants that are connected to the grid or better known as hybrid grid connected power systems. This research took place at Villa Peruna Saba, Gianyar - Bali which uses a hybrid grid connected power system that combines photovoltaics and generators connected to the grid utilty in supplying electricity loads. The analysis is carried out on the characteristics of the average load, the contribution of each electric power source and the workings of the hybrid grid connected hybrid power plant system. From the analysis, it is known that the contribution of power derived from solar power plants is 561.27 kW or 22.41% in April 2018 and 510.72 kW or 20.71% in May 2018.


2018 ◽  
Vol 64 ◽  
pp. 01001 ◽  
Author(s):  
Sogukpinar Haci ◽  
Bozkurt Ismail ◽  
Cag Serkan

Turkey wants to become the world’s 10th largest economy in the 100th anniversary of the foundation of the republic of Turkey. In order to achieve this goal, there are many breakthroughs in the political, economic and in energy fields. Turkey’s installed power capacity was 85000 MW in 2017 but installed power of 125.000MW is targeted to achieve the objective of 2023 targets. The government is aiming to increase the total production of renewable energy share by 30% in 2023, while foreseeing the increase in capacity due to nuclear and fossil fuel consumption. Targets for different technologies are 34000 MW hydroelectric, 20000 MW wind energy, 5000 MW solar energy (photovoltaic and condensed solar energy), 1000 MW geothermal energy and 1000 MW biomass. Capacity utilization in hydroelectricity is 62%, wind power is 14%, and geothermal power is 33%. The total installed capacity of Biogas, Biomass, Waste Heat and Pyrolytic Oil Power Plants is 530 MW. Theoretical total power capacity of the solar energy for Turkey as 300 TWh/year and reached 45% of the 2023 target in 2017 in the last three years. However, it is estimated that the targets of 2023 in solar energy can be exceeded. Government offers attractive incentive packages for renewable and other energy sector to achieve 2023 goals. In order to encourage domestic production, a total of 2000 MW wind and solar energy installation bid was carried out in 2017. This contract is expected to make Turkey as energy hub both in terms of installation and technology. In this study, Turkey’s renewable energy potential, and energy strategies and breakthroughs for this were investigated and discussed.


Author(s):  
James Spelling ◽  
Björn Laumert

The hybridization of combined-cycle power plants with solar energy is an attractive means of reducing carbon dioxide (CO2) emissions from gas-based power generation. However, the construction of the first generation of commercial hybrid power plants will present the designer with a large number of choices. To assist decision making, a thermo-economic study has been performed for three different hybrid power plant configurations, including both solar thermal and photovoltaic hybridization options. Solar photovoltaic combined-cycle (SPVCC) power plants were shown to be able to integrate up to 63% solar energy on an annual basis, whereas hybrid gas turbine combined-cycle (HGTCC) systems provide the lowest cost of solar electricity, with costs only 2.1% higher than a reference, unmodified combined-cycle power plant. The integrated solar combined-cycle (ISCC) configuration has been shown to be economically unattractive.


Author(s):  
Welly Yandi ◽  
Wahri Sunanda ◽  
Nada Fitsa Alfazumi

The Waste Power Plant is one of the power plants with a new renewable energy concept that utilizes waste as fuel. The processing of waste into electrical energy is carried out in two ways: the thermal conversion process and the biological conversion process to find the potential for waste that can be used as fuel to generate electricity. The analysis is needed, especially for Pangkalpinang, which currently has a lot of unprocessed waste. This research was conducted through calculations using several formulas that have been used in previous studies. From these results, the potential waste in 2015 is 97.25 tons/day and produces energy of 18548.10 MWh/year, and in 2020, it was about 186.57 tons/day and produced energy of 35547.18 MWh/year. The projection calculations are carried out to determine the potential for 2021 to 2030. Waste as much as 182523 tons/day in2021 can produce energy of as much as 34776.11 MWh/year. And in 2030, the amount of waste as much as 218132 tons/day can generate an energy potential of 41560.69 MWh/year.


Author(s):  
Ana Nur Azizah ◽  
Sugeng Purbawanto

Hybrid Power Plant is an integration of two or more power plants based on renewable energy or not. Indonesia targets 23% of new renewable energy in the national energy mix in 2025, Merden Village is one of the areas located in Padureso District, Kebumen Regency., which has a renewable energy-based power plant, namely PLTMH with a capacity of 2x200 kVa connected to the grid (PLN). However, from August to December it did not run optimally due to a lack of water supply from the Wadaslintang Reservoir. Based on the database form NASA, the village of Merden is an area that has radiation of 4,60 kWh/m2/day, with a high enough intensity, this village has the potential to be paired with photovoltaics as additional energy. This research uses the help of HOMER software with the parameters entered, among others, energy source (solar radiation intensity and water discharge), equipment specifications, cost and daily load profile. The results of this study are the electrical energy production of the two generators is 1.301.169 kWh per year with a total NPC value of -$941.597 and an LCOE of - $0,056. The most optimal configuration is Microhydro 385 kW, PV 15kW, Battery 40 units, Bi-Directional Inverter 75 kW. This shows the additional of PV can be a reference because it can produce electrical energy for one full year.Keywords : Hybrid, Microhydro, PV, Grid, HOMER


2019 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Aris Suryadi ◽  
Purwandito Tulus Asmoro ◽  
Ahmad Solihin

Electrical Energy is a very important need, but the electrical energy we use today still comes from conventional power plants that have negative threats such as pollution and fossil fuel reserves that are decreasing. To overcome this, by utilizing alternative energy that is environmentally friendly, one of them is wind energy and solar energy. Hybrid power plants use savonius helix wind turbines and solar cells are made to minimize the use of conventional energy. This tool utilizes wind and solar energy as the main media of electricity generation. The wind turbine which is made is a type of helix savonius vertical turbine that has a large torque, can rotate with low wind speed with a turbine size 80 cm high, diameter 25 cm which is connected to the generator and mounted on mechanical construction with a height of 200 cm and mounted control panel and solar cell with a capacity of 20 WP. This study aims to develop the potential of alternative energy as a power generation medium and be used as a source of flashing lights in the Indorama Engineering Polytechnic lightning tower tower. Savonius helix wind turbines that are designed require a minimum wind speed of 2.45 m / s for the start of the turbine rotation. Generating from the generator produces a maximum voltage of 18.64 V with a generator rotation of 304 rpm when not loaded and when loaded produces a maximum spin voltage of 281.3 rpm, 11.73 V voltage and 0.038 W power with a wind speed of 5 m/s. From the results of testing this hybrid power plant can be used for flashing lights on the lightning rod tower of the Indorama Polytechnic Engineering campus with a duration of 12 hours per day.


Author(s):  
Hocine Guentri ◽  
Mokhtar Benasla ◽  
Kabira Ezaeri

To achieve its renewable energy targets, Algeria has launched several projects, such as the Hassi Rmel solar thermal-gas hybrid power plant, the Taberkine wind farm in Adrar, and several small photovoltaic power plants. Besides, others planned including, the Naama PV plant. In this study, the impact of the expected photovoltaic power plant at the province of Naama on the southwestern network of Algeria. The obtained results indicate that the installation of this plant would have a positive impact on the system by reducing the losses active and improving the voltage profile.


2019 ◽  
Vol 9 (5) ◽  
pp. 850 ◽  
Author(s):  
Cristina Serrano-Sanchez ◽  
Marina Olmeda-Delgado ◽  
Fontina Petrakopoulou

Hybrid power plants that couple conventional with renewable energy are promising alternatives to electricity generation with low greenhouse gas emissions. Such plants aim to improve the operational stability of renewable power plants, while at the same time reducing the fuel consumption of conventional fossil fuel power plants. Here, we propose and evaluate the thermodynamic and economic viability of a hybrid plant under different operating conditions, applying exergy and economic analyses. The hybrid plant combines a coal plant with a solar-tower field. The plant is also compared with a conventional coal-fired plant of similar capacity. The results show that the proposed hybrid plant can emit 4.6% less pollutants due to the addition of solar energy. Fuel consumption can also be decreased by the same amount. The exergy efficiency of the hybrid power plant is found to be 35.8%, 1.6 percentage points higher than the efficiency of the conventional coal plant, and the total capital investment needed to build and operate a plant is 8050.32 $/kW. This cost is higher than the necessary capital investment of 5979.69 $/kW to build and operate a coal-fired power plant, and it is mainly due to the higher purchased equipment cost. Finally, the levelized cost of electricity of the hybrid plant is found to be 0.19 $/kWh (using both solar and coal resources) and 0.12 $/kWh when the plant is fueled only with coal.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Aris Suryadi ◽  
Purwandito Tulus Asmoro ◽  
Ahmad Solihin

Electrical Energy is a very important need, but the electrical energy we use today still comes from conventional power plants that have negative threats such as pollution and fossil fuel reserves that are decreasing. To overcome this, by utilizing alternative energy that is environmentally friendly, one of them is wind energy and solar energy. Hybrid power plants use savonius helix wind turbines and solar cells are made to minimize the use of conventional energy. This tool utilizes wind and solar energy as the main media of electricity generation. The wind turbine which is made is a type of helix savonius vertical turbine that has a large torque, can rotate with low wind speed with a turbine size 80 cm high, diameter 25 cm which is connected to the generator and mounted on mechanical construction with a height of 200 cm and mounted control panel and solar cell with a capacity of 20 WP. This study aims to develop the potential of alternative energy as a power generation medium and be used as a source of flashing lights in the Indorama Engineering Polytechnic lightning tower tower. Savonius helix wind turbines that are designed require a minimum wind speed of 2.45 m / s for the start of the turbine rotation. Generating from the generator produces a maximum voltage of 18.64 V with a generator rotation of 304 rpm when not loaded and when loaded produces a maximum spin voltage of 281.3 rpm, 11.73 V voltage and 0.038 W power with a wind speed of 5 m/s. From the results of testing this hybrid power plant can be used for flashing lights on the lightning rod tower of the Indorama Polytechnic Engineering campus with a duration of 12 hours per day


Sign in / Sign up

Export Citation Format

Share Document