HYBRID ELECTRIC POWER PLANT USING WIND TURBINE SAVONIUS HELIX AND SOLAR CELL AS AN ALTERNATIVE POWER SOURCE IN THE LIGHTNING TOWER AT FLASHING LIGHTS

2019 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Aris Suryadi ◽  
Purwandito Tulus Asmoro ◽  
Ahmad Solihin

Electrical Energy is a very important need, but the electrical energy we use today still comes from conventional power plants that have negative threats such as pollution and fossil fuel reserves that are decreasing. To overcome this, by utilizing alternative energy that is environmentally friendly, one of them is wind energy and solar energy. Hybrid power plants use savonius helix wind turbines and solar cells are made to minimize the use of conventional energy. This tool utilizes wind and solar energy as the main media of electricity generation. The wind turbine which is made is a type of helix savonius vertical turbine that has a large torque, can rotate with low wind speed with a turbine size 80 cm high, diameter 25 cm which is connected to the generator and mounted on mechanical construction with a height of 200 cm and mounted control panel and solar cell with a capacity of 20 WP. This study aims to develop the potential of alternative energy as a power generation medium and be used as a source of flashing lights in the Indorama Engineering Polytechnic lightning tower tower. Savonius helix wind turbines that are designed require a minimum wind speed of 2.45 m / s for the start of the turbine rotation. Generating from the generator produces a maximum voltage of 18.64 V with a generator rotation of 304 rpm when not loaded and when loaded produces a maximum spin voltage of 281.3 rpm, 11.73 V voltage and 0.038 W power with a wind speed of 5 m/s. From the results of testing this hybrid power plant can be used for flashing lights on the lightning rod tower of the Indorama Polytechnic Engineering campus with a duration of 12 hours per day.

2019 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Aris Suryadi ◽  
Purwandito Tulus Asmoro ◽  
Ahmad Solihin

Electrical Energy is a very important need, but the electrical energy we use today still comes from conventional power plants that have negative threats such as pollution and fossil fuel reserves that are decreasing. To overcome this, by utilizing alternative energy that is environmentally friendly, one of them is wind energy and solar energy. Hybrid power plants use savonius helix wind turbines and solar cells are made to minimize the use of conventional energy. This tool utilizes wind and solar energy as the main media of electricity generation. The wind turbine which is made is a type of helix savonius vertical turbine that has a large torque, can rotate with low wind speed with a turbine size 80 cm high, diameter 25 cm which is connected to the generator and mounted on mechanical construction with a height of 200 cm and mounted control panel and solar cell with a capacity of 20 WP. This study aims to develop the potential of alternative energy as a power generation medium and be used as a source of flashing lights in the Indorama Engineering Polytechnic lightning tower tower. Savonius helix wind turbines that are designed require a minimum wind speed of 2.45 m / s for the start of the turbine rotation. Generating from the generator produces a maximum voltage of 18.64 V with a generator rotation of 304 rpm when not loaded and when loaded produces a maximum spin voltage of 281.3 rpm, 11.73 V voltage and 0.038 W power with a wind speed of 5 m/s. From the results of testing this hybrid power plant can be used for flashing lights on the lightning rod tower of the Indorama Polytechnic Engineering campus with a duration of 12 hours per day


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

The need for electrical energy in Indonesia continues to increase every year. In line with the increase in the electrification ratio to 100% in 2050, the demand for electrical energy is projected to reach 7 times, namely 1,611 TWh. To meet electricity needs, the government has created a 35 GW program, but one of the largest contributors to power generation fuel is coal with a share of 58% or around 50 GW which is estimated to be exhausted within the next 68 years. For this reason, innovations are needed in terms of fulfilling electrical energy by utilizing renewable energy potential, one of which is hydro energy, which is 45,379 MW from a total resource of 75,091 MW. Therefore, from this potential, innovations related to renewable energy have been created, namely the Hybrid Portable Underwater Turbine Hydro and Solar Energy hybrid power plant. This power plant uses an undersea current as a propulsion which is hybridized with solar power to increase the production of electrical energy. This power plant has the advantage that there is an Underwater turbine design that is resistant to underwater flow and a water flow direction to increase the work efficiency of the underwater turbine. From the test results, the portable Underwater turbine hydro produces 950 W in a day. Solar panels produce 65.6 Watts a day. The total hybrid that can be produced is 1.02 kW a day. In its implementation it can supply loads of up to 900 (VA) such as lamps, fans, TV, etc. This hybrid power plant can be a solution to help meet electricity needs in the area around Dusun Dongol, Sidoarjo through alternative electrical energy innovations.


2018 ◽  
Vol 204 ◽  
pp. 04013 ◽  
Author(s):  
Rima Septiani Prastika ◽  
A.N. Afandi ◽  
Dwi Prihanto

Recently, electric usages are increasing every year by year in many sectors. In facts, fossil fuels have been fueled to produce electrical energy availability at many power plants which are very limited for the sustainable procurement. Developing and implementing renewable energy sources should be urgently promoted to reduce the dependence on fossil fuels that have been fueled to generate electricity for the long period throughout various power plant combinations. In expectation, the natural source of electrical energy which environmentally friendly and easy to obtain in nature is recommended to explore for the existing energy producers. The natural source of energy can be operated as an alternative power plant to reduce environmental effects and to decrease air contaminants. These works cover those opportunities. In these studies, the method used is a quantitative category with collected primary and secondary data for all evaluations and mitigations. In general, these works are also designed for identifying problems and looking for literature, data collection, processing stage, analysis phase, and final conclusion. The data used is defined in terms of temperature, air pressure, and wind speed. The collected data are supposed to the Purwoharjo City of Banyuwangi Regency, with 10 meters above ground level. Naturally, the wind speed is about 3.5 m/s to 4 m/s and the average temperature is 300° Kelvin. The potentially generated wind energy at a single point of coordinates is around 85.17 Wh.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Sugeng . ◽  
Taufiqur Rokhman ◽  
Paridawati . ◽  
Agus Sofwan

 In the Department of Electrical Engineering,Islamic University "45" Bekasiuntil now does not have a laboratory of Renewable energy. In this research, a hybrid power plants have been designed by combined between hydroelectric power plants and solar power plants.From the design result of the Solar Cell Power Plant, obtained that for 1 to 4 pieces of 100 Wp solar panels obtained the generation voltage of 21.12 volts generating power of 18.80 Watts on average time for 7.8 hours. Whereas for MHP the average voltage is 10.81 Volt and the generation power is 41.48 Watts for 8 hours of use.


2019 ◽  
Vol 2 (3) ◽  
pp. 152-165
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: the article reviews the main types of wind turbines and electric power generators designated for wind-driven power plants, as well as new technological solutions. The co-authors have identified the main strengths and weaknesses of wind-driven power plants used as a source of alternative energy. The co-authors have developed an algorithm for selection of a standalone power supply system using a wind-driven power plant.Subject of research: using a comprehensive approach to efficiently design and develop wind-driven power plants with account for climatic and geographic conditions, specifications of wind-driven power plants to be installed.Objective: identification of requirements and specifications needed to develop an algorithm for selection of a standalone power supply system using a wind power plant.Methods: the co-authors have analyzed different types of wind turbines and power generators which are currently in use.Results and discussion: the co-authors present the algorithm for selection of a standalone power supply system using a wind-driven power plant.Conclusion: the algorithm, which is being developed by the co-authors, helps to design an efficient standalone power supply system having a wind-driven power plant.


2019 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Gordon Arifin Sinaga ◽  
I Made Mataram ◽  
Tjok Gede Indra Partha

Renewable energy is energy that comes from natural processes that will not be exhausted and sustainable if managed properly. In its use, to maintain the continuity of the availability of electrical energy maximally, it is necessary to combine several types of power plants that are connected to the grid or better known as hybrid grid connected power systems. This research took place at Villa Peruna Saba, Gianyar - Bali which uses a hybrid grid connected power system that combines photovoltaics and generators connected to the grid utilty in supplying electricity loads. The analysis is carried out on the characteristics of the average load, the contribution of each electric power source and the workings of the hybrid grid connected hybrid power plant system. From the analysis, it is known that the contribution of power derived from solar power plants is 561.27 kW or 22.41% in April 2018 and 510.72 kW or 20.71% in May 2018.


Author(s):  
S. Roberto Gonzalez A. ◽  
Yuji Ohya ◽  
Takashi Karasudani ◽  
Shusaku Iba ◽  
Kimihiko Watanabe

Fossil fuels have been used extensively all over the world to satisfy energy demands. However, their availability is limited and their negative impact on the environment undeniable. Due to this, the need to develop alternative energy resources was recognized a few decades ago. Among different alternatives that have been developed, wind energy appears as a promising option to be implemented in many parts of the world. Nonetheless, its development and the cost per kW are still higher than that from fossil fuels. The intermittence of its capability to produce energy and the size of the wind power plant (as compared to a coal or nuclear power plant of the same energy output) have not made its implementation easier. In order to make wind energy more competitive and attractive to investors, new energy systems are desired. Specifically, it is desired to have a higher energy output. In this study a brimmed-diffuser shroud was incorporated into a 1 kW wind turbine. The turbine was then evaluated under fluctuating wind conditions. The experiments were conducted at the large boundary wind tunnel of Kyushu University. It is shown that power output increases for a fluctuating flow as opposed to a steady flow. The turbine power output is capable of following the changes in the wind speed accurately in the range of wind speed fluctuations tested. This is shown by correlation analysis and supported by the frequency spectrum. This study is part of a larger research work aimed at evaluating a novel wind turbine design. The current results are very encouraging. Possible wind sites of wind speed average lower than the current minimum accepted values can be exploited by using a turbine like the one evaluated in this work.


Author(s):  
James Spelling ◽  
Björn Laumert

The hybridization of combined-cycle power plants with solar energy is an attractive means of reducing carbon dioxide emissions from gas-based power generation. However, the construction of the first generation of commercial hybrid power plants will present the designer with a large number of choices. To assist decision making, a thermoeconomic study has been performed for three different hybrid power plant configurations, including both solar thermal and photovoltaic hybridization options. Solar photovoltaic combined-cycle power plants were shown to be able to integrate up to 63 % solar energy on an annual basis, whereas hybrid gas-turbine combined-cycle systems provide the lowest cost of solar electricity, with costs only 2.1 % higher than a reference, unmodified combined-cycle power plant. The integrated solar combined-cycle configuration has been shown to be economically unattractive.


Author(s):  
James Spelling ◽  
Björn Laumert

The hybridization of combined-cycle power plants with solar energy is an attractive means of reducing carbon dioxide (CO2) emissions from gas-based power generation. However, the construction of the first generation of commercial hybrid power plants will present the designer with a large number of choices. To assist decision making, a thermo-economic study has been performed for three different hybrid power plant configurations, including both solar thermal and photovoltaic hybridization options. Solar photovoltaic combined-cycle (SPVCC) power plants were shown to be able to integrate up to 63% solar energy on an annual basis, whereas hybrid gas turbine combined-cycle (HGTCC) systems provide the lowest cost of solar electricity, with costs only 2.1% higher than a reference, unmodified combined-cycle power plant. The integrated solar combined-cycle (ISCC) configuration has been shown to be economically unattractive.


Sign in / Sign up

Export Citation Format

Share Document