scholarly journals Usage Analysis of Smartphone with Hierarchical Clustering

Functional and Non Functional attributes are the important factors of the Smartphone. This paper deals with how to group the characteristics of mobile phone using the clustering algorithms and then obtained the results after classify the related algorithms. Classify all the functional and non-functional attributes of the smartphone using the latest data mining algorithms using WEKA (Waikato Environment for Knowledge Analysis) open-source software to analyze data.

Author(s):  
Jie Dong ◽  
Min-Feng Zhu ◽  
Yong-Huan Yun ◽  
Ai-Ping Lu ◽  
Ting-Jun Hou ◽  
...  

Abstract Background With the increasing development of biotechnology and information technology, publicly available data in chemistry and biology are undergoing explosive growth. Such wealthy information in these resources needs to be extracted and then transformed to useful knowledge by various data mining methods. However, a main computational challenge is how to effectively represent or encode molecular objects under investigation such as chemicals, proteins, DNAs and even complicated interactions when data mining methods are employed. To further explore these complicated data, an integrated toolkit to represent different types of molecular objects and support various data mining algorithms is urgently needed. Results We developed a freely available R/CRAN package, called BioMedR, for molecular representations of chemicals, proteins, DNAs and pairwise samples of their interactions. The current version of BioMedR could calculate 293 molecular descriptors and 13 kinds of molecular fingerprints for small molecules, 9920 protein descriptors based on protein sequences and six types of generalized scale-based descriptors for proteochemometric modeling, more than 6000 DNA descriptors from nucleotide sequences and six types of interaction descriptors using three different combining strategies. Moreover, this package realized five similarity calculation methods and four powerful clustering algorithms as well as several useful auxiliary tools, which aims at building an integrated analysis pipeline for data acquisition, data checking, descriptor calculation and data modeling. Conclusion BioMedR provides a comprehensive and uniform R package to link up different representations of molecular objects with each other and will benefit cheminformatics/bioinformatics and other biomedical users. It is available at: https://CRAN.R-project.org/package=BioMedR and https://github.com/wind22zhu/BioMedR/.


Author(s):  
G. Ramadevi ◽  
Srujitha Yeruva ◽  
P. Sravanthi ◽  
P. Eknath Vamsi ◽  
S. Jaya Prakash

In a digitized world, data is growing exponentially and it is difficult to analyze the data and give the results. Data mining techniques play an important role in healthcare sector - BigData. By making use of Data mining algorithms it is possible to analyze, detect and predict the presence of disease which helps doctors to detect the disease early and in decision making. The objective of data mining techniques used is to design an automated tool that notifies the patient’s treatment history disease and medical data to doctors. Data mining techniques are very much useful in analyzing medical data to achieve meaningful and practical patterns. This project works on diabetes medical data, classification and clustering algorithms like (OPTICS, NAIVEBAYES, and BRICH) are implemented and the efficiency of the same is examined.


Author(s):  
Negar Sadat Soleimani Zakeri ◽  
Saeid Pashazadeh

Active faults are sources of earthquakes and one of them is north fault of Tabriz in the northwest of Iran. The activation of faults can harm humans' life and constructions. The analysis of the seismic data in active regions can be helpful in dealing with earthquake hazards and devising prevention strategies. In this chapter, structure of earthquake events along with application of various intelligent data mining algorithms for earthquake prediction are studied. Main focus is on categorizing the seismic data of local regions according to the events' location using clustering algorithms for classification and then using intelligent artificial neural network for cluster prediction. As a result, the target data were clustered to six groups and proposed model with 10 fold cross validation yielded accuracy of 98.3%. Also, as a case study, the tectonic stress on concentration zones of Tabriz fault has been identified and five features of the events were used. Finally, the most important points have been proposed for evaluation of the nonlinear model predictions as future directions.


2019 ◽  
Vol 14 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Viswam Subeesh ◽  
Eswaran Maheswari ◽  
Hemendra Singh ◽  
Thomas Elsa Beulah ◽  
Ann Mary Swaroop

Background: The signal is defined as “reported information on a possible causal relationship between an adverse event and a drug, of which the relationship is unknown or incompletely documented previously”. Objective: To detect novel adverse events of iloperidone by disproportionality analysis in FDA database of Adverse Event Reporting System (FAERS) using Data Mining Algorithms (DMAs). Methodology: The US FAERS database consists of 1028 iloperidone associated Drug Event Combinations (DECs) which were reported from 2010 Q1 to 2016 Q3. We consider DECs for disproportionality analysis only if a minimum of ten reports are present in database for the given adverse event and which were not detected earlier (in clinical trials). Two data mining algorithms, namely, Reporting Odds Ratio (ROR) and Information Component (IC) were applied retrospectively in the aforementioned time period. A value of ROR-1.96SE>1 and IC- 2SD>0 were considered as the threshold for positive signal. Results: The mean age of the patients of iloperidone associated events was found to be 44years [95% CI: 36-51], nevertheless age was not mentioned in twenty-one reports. The data mining algorithms exhibited positive signal for akathisia (ROR-1.96SE=43.15, IC-2SD=2.99), dyskinesia (21.24, 3.06), peripheral oedema (6.67,1.08), priapism (425.7,9.09) and sexual dysfunction (26.6-1.5) upon analysis as those were well above the pre-set threshold. Conclusion: Iloperidone associated five potential signals were generated by data mining in the FDA AERS database. The result requires an integration of further clinical surveillance for the quantification and validation of possible risks for the adverse events reported of iloperidone.


Author(s):  
Ari Fadli ◽  
Azis Wisnu Widhi Nugraha ◽  
Muhammad Syaiful Aliim ◽  
Acep Taryana ◽  
Yogiek Indra Kurniawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document