scholarly journals Experimental Examination on the Cooling of a Helmet using Microencapsulated Phase Change Material

A helmet is the important personal protective equipment for the motorcyclist. This work analyses the use of the microencapsulated phase change material (MPCM) to cool the helmet and also investigate the effect of the inside heat generation rate, simulated radiation and wind speed on the cooling systems. The results indicate that with MPCM packed helmet has the ability to sustain constant temperature for more time when compared to the normal helmet. The findings also show that the head heat generation rate is the main factor that will affect the cooling time of the system. The wind speed and simulated radiation did not affect much on the cooling time. The results depicted that the extension of the helmet cooling time is based on the amount of MPCM embedded inside the helmet. Even though this investigation concentrates on cooling of helmet, the findings would also be helpful for the improvement of MPCM in many other applications.

2020 ◽  
Vol 56 (3) ◽  
pp. 2176-2191
Author(s):  
Jun Li ◽  
Xiaoyun Zhu ◽  
Huichang Wang ◽  
Pengcheng Lin ◽  
Lisi Jia ◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 155892502110295
Author(s):  
Abdus Shahid ◽  
Solaiman Miah ◽  
Abdur Rahim

Jute bags are widely used to carry food grains and other materials that may be prone to quality deterioration due to thermal fluctuation. Thermal and moisture properties play a significant role in the packaging materials in the form of a container. This study deals with the effect of microencapsulated phase change material (MPCM) with hydrophobic binder on thermal and moisture management properties of jute fabric. Jute fabric was treated with MPCM by pad-dry-cure method. The treated sample was characterized by thermogravimetric analysis (TGA), differential scanning colorimeter (DSC), scanning electron microscope (SEM), moisture management tester (MMT), and air permeability tester. The results revealed that MPCM treated jute fabric shows greater thermal stability and heat absorption ability of 10.58 J/g while changing from solid to liquid phase. The SEM image ensures even distribution of MPCMs on fabric surface and surface roughness was also observed using image processing software. The air permeability was found to decrease whereas the water repellency enhanced in the developed sample.


2021 ◽  
Vol 888 ◽  
pp. 161606
Author(s):  
Qinglin Li ◽  
Xiaodong Ma ◽  
Xiaoyu Zhang ◽  
Jiqiang Ma ◽  
Jiaolong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document