scholarly journals Frequency Reconfigurable Patch Antenna for L band Applications

A novel design of a Frequency Reconfigurable patch antenna which has applications in the L- Band, namely, radars, GPS, telecommunication system and aircraft surveillance is presented in this paper. The antenna having dimensions of 34.45mm x 45.64mm has been designed using Ansys HFSS. It is a microstrip line inset fed patch antenna with square concentric rings as Defected Ground Structure (DGS) and FR-4 as the substrate. Two PIN diodes, BAR 63-02V, have been used on the ground plane to carry out switching in the frequency domain. The simulated results depict the frequency shift from 1.612 MHz to 1.815 MHz for different combinations of PIN diodes while keeping the radiation patterns intact. The simulated S11 values are well below the – 10dB value in all the four combinations. The average impedance bandwidth obtained is 400 MHz. The measured results on the fabricated antenna using Vector Network Analyzer are in close approximation to the simulated results.

2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Sanyog Rawat ◽  
K. Sharma

AbstractA novel design of a circular patch antenna having defected ground structure is presented in this communication. The antenna is designed for C-band applications. A wide bandwidth of 60.3% (4.04–7.28) GHz is obtained in the C-band frequency range 4–8 GHz. It is also found through parametric analysis that shape and dimensions of the finite ground plane and slots in the patch are the key factors in improving the bandwidth of the proposed geometry. The antenna is fabricated using FR-4 substrate and parameters like return loss, VSWR and input impedance are measured experimentally.


2016 ◽  
Vol 9 (5) ◽  
pp. 1075-1083 ◽  
Author(s):  
Ankush Gupta ◽  
Hem Dutt Joshi ◽  
Rajesh Khanna

In this paper, an X-shaped fractal antenna with defected ground structure (DGS) is presented for multiband and wideband applications. The X shape is used due to its simple design and DGS is utilized to achieve size reduction with multiband and wideband features in the frequency range of 1–7 GHz. The proposed structure is fabricated on FR4 substrate with 1.6 mm thickness. We have proposed two different antennas both are having X-shaped fractal patch with a slotted ground plane to have more impedance bandwidth and better return loss. Various parameters like scale factor, width of ground plane, number of slots with their dimensions and feed line length are optimized to have size reduction and for enhancing the performance of antenna. Reflection coefficient shows the multiband and wideband features of proposed antenna. One of the proposed antennas covers various applications like IEEE802.11y at 3.65 and 4.9 GHz, IEEE 802.11a at 5.4 GHz, 802.11P at 5.9 GHz. Other antenna covers applications like IEEE802.16 at 3.5 GHz; 5 cm band for amateur radio and satellite and future 5 G communication systems over 6 GHz. The antenna designing was done using CST software and simulation results were compared with experimental results (using E5071C network analyzer).


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


2020 ◽  
Vol 16 (1) ◽  
pp. 15-22
Author(s):  
Ajay Kumar Dwivedi ◽  
Brijesh Mishra ◽  
Vivek Singh ◽  
Pramod Narayan Tripathi ◽  
Ashutosh Kumar Singh

AbstractA novel design of ultra-wideband CPW-fed compact monopole patch antenna is presented in the article. The size of the antenna is 22 × 18 × 1.6 mm and it operates well over an ultra-wideband frequency range 4.86–13.66 GHz (simulated) and 4.93–13.54 GHz (measured) covering C, X and partial Ku band applications. The proposed design consists of a defected ground plane and U-shape radiating patch along with two square shape parasitic patches in order to achieve the ultra-wideband (UWB) operations. The performance matrix is validated through measured results that indicate the wide impedance bandwidth (93.2 %) with maximum gain of 4 dBi with nearly 95 % of maximum radiation efficiency; moreover, the 3D gain pattern manifests approximately omni-directional pattern of the proposed design. The prototype has been modelled using HFSS (High Frequency Structure Simulator-18) by ANSYS, fabricated and tested using vector network analyser E5071C.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


A triple band microstrip-fed patch antenna is presented which contains the radiating structure having rectangular zigzag shape patch and an altered ground structure with a swastic shape design. This modified ground plane actually acts as a defected ground structure (DGS). Both the modified ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed microstrip patch antenna (MPA) is able to generate three specific operating bands viz. 11.9–13.6 GHz, 5.71–5.82 GHz, 4.5-4.6 GHz with adequate bandwidth of 1.64 GHz, 110 MHz and 100 MHz and corresponding return loss of -32dB, -23dB, -14.3dB respectively covering Wireless Local Area Network (WLAN), C-band and Ku-band applications. A parametric study has been performed for the rectangular slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Lastly, the fabrication of the proposed antenna with optimized parameters has been accomplished and measured results for S-parameter magnitude have been discussed


2021 ◽  
Author(s):  
Saida Ibnyaich ◽  
Samira Chabaa ◽  
Layla wakrim ◽  
Abdessalam El Yassini ◽  
Abdelouhab Zeroual ◽  
...  

Abstract A new compact pentagonal microstrip patch antenna with slotted ground plane structure, developed for use in ultrawideband applications, is studied in this article. The proposed antenna is mainly constituted by a pentagonal shaped patch antenna, a defected ground plane structure, two stubs, and four slots to improve the bandwidth. The designed antenna has an overall dimension of 30×17.59×1.6mm 3 , for WIMAX /WLAN/ WiFi/HIPERLAN-2 /Bluetooth /LTE /5G applications with a very large bandwidth starting from 2.66 GHz to 10.82 GHz (S 11 <-6 dB ). A parametric study of the ground plane structure was carried out to find the final and the optimal UWB antenna, and to confirm that the antenna has good performance and broader bandwidth. The proposed antenna prototype has been fabricated. The measured results indicate that the antenna has a good impedance matching. The antenna has an electrically small dimension with a good gain, a notable efficiency, and a wide impedance bandwidth, which makes this antenna an excellent candidate for ultrawideband wireless communication, microwave imaging, radar applications, and the major part of the mobile phone frequencies as well.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dattatreya Gopi ◽  
Appala Raju Vadaboyina ◽  
J. R. K. Kumar Dabbakuti

AbstractA simple low profile defected ground structure based monopole circular-shaped patch antenna is proposing for ultrawide-band applications. The design allows for a simple and compact structure on the FR-4 substrate material. The proposed design initially has a meager antenna gain and bandwidth. To increase the antenna bandwidth and gain, the defective ground structure is implemented with four dumble-shaped slots. Parametric analysis is considered to find the radius of circular patch for tuning of UWB frequency applications. The proposed MCP antenna resonates at 2.9 GHz, 9.1 GHz frequencies with a S11 of − 34.84 dB, − 33.74 dB, respectively, and achieves 8.1 GHz (2.5–10.6 GHz) impedance bandwidth concerning the − 10 dB reference line of the reflection coefficient. The gains are 8.4 dBi, 8.2 dBi for the two resonant frequencies, and the radiation patterns are semi-omnidirectional, omnidirectional. The proposed antenna has-been validated by observing good agreement between the simulation and the measured results.


2020 ◽  
Vol 9 (2) ◽  
pp. 205-210
Author(s):  
Mia Maria Ulfah ◽  
Achmad Munir

Pada makalah ini, teknik untuk meningkatkan lebar pita pada antena Substrate Integrated Waveguide (SIW) dilakukan dengan menggunakan Defected Ground Structure (DGS) dengan cara memodifikasi bentuk dan ukuran slot tertentu pada bagian ground plane. Kombinasi antara slot split ring berbentuk persegi panjang dan slot berbentuk silang (X) sebagai DGS ditambahkan untuk mendapatkan karakteristik antena pita lebar. Substrat yang tipis dapat meningkatkan faktor kualitas (Q) yang berakibat pada sempitnya lebar pita antena. Untuk mengatasi hal tersebut, antena SIW disimulasikan dengan menggunakan substrat dielektrik yang tebal. Dimensi total antena SIW adalah sebesar 171 mm × 160,5 mm dengan ketebalan 4,905 mm dan beroperasi pada frekuensi tengah 2 GHz. Antena SIW dicatu menggunakan teknik proximity coupling yang dihubungkan dengan konektor berimpedans 50 Ω. Hasil simulasi menunjukkan bahwa lebar pita sebesar 575 MHz diperoleh antena dengan teknik yang diusulkan, dengan lebar pita -10 dB dari rentang frekuensi 1,675 GHz - 2,25 GHz, gain maksimum sebesar 6,03 dBi pada frekuensi 1,85 GHz, dan pola radiasi bidirectional.


Sign in / Sign up

Export Citation Format

Share Document