scholarly journals Heat Transfer and Slip Effects on the Mhd Peristaltic Flow of Viscous Fluid in A Tapered Microvessels: Application of Blood Flow Research

This research work is proposed at reporting heat transfer on the peristaltic flow of an electrically conducting fluid in a tapered microvessels under the lubrication theory. The proposed geometry analyzes the blood flow in the heart vessels and maintain the pressure level in the human body. The solutions for the distribution of axial velocity, temperature distribution, pressure gradient and stream function have been obtained analytically. The influences of many evolving parameters on the flow characteristics are revealed and deliberated with the assist of figures. The mathematical outcomes show that the trapped bolus enhances in size with increasing slip parameter but decreases with the increase of Grashof number.

2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2017 ◽  
Vol 22 (2) ◽  
pp. 403-414 ◽  
Author(s):  
G.C. Sankad ◽  
P.S. Nagathan

AbstractAn attempt has been made to examine the effects of magnetohydrodynamic couple stress fluid in peristaltic flow with porous medium under the impact of slip, heat transfer and wall properties. The expressions are obtained for temperature, coefficient of heat transfer and velocity. Influences of different parameters, the Hartmann number, Brinkman number and adaptability parameters on the temperature and warmth trade coefficient are discussed through outlines.


2017 ◽  
Vol 27 (7) ◽  
pp. 1571-1595 ◽  
Author(s):  
Jian Liu ◽  
Gongnan Xie ◽  
Bengt Ake Sunden ◽  
Lei Wang ◽  
Martin Andersson

Purpose The purpose of this paper is to augment heat transfer rates of traditional rib-elements with minimal pressure drop penalties. Design/methodology/approach The novel geometries in the present research are conventional cylindrical ribs with rounded transitions to the adjacent flat surfaces and with modifications at their bases. All turbulent fluid flow and heat transfer results are presented using computation fluid dynamics with a validated v2f turbulence closure model. Turbulent flow characteristics and heat transfer performances in square channels with improved ribbed structures are numerically analyzed in this research work. Findings Based on the results, it is found that rounded transition cylindrical ribs have a large advantage over the conventional ribs in both enhancing heat transfer and reducing pressure loss penalty. In addition, cylindrical ribs increase the flow impingement at the upstream of the ribs, which will effectively increase the high heat transfer areas. The design of rounded transition cylindrical ribs and grooves will be an effective way to improve heat transfer enhancement and overall thermal performance of internal channels within blade cooling. Originality/value The novel geometries in this research are conventional cylindrical ribs with rounded transitions to the adjacent flat surfaces and with modifications at their bases. The combination of cylindrical ribs and grooves to manipulate the turbulent flow.


Author(s):  
Hazem Ali Attia

The steady axisymmetric hydromagnetic flow of an incompressible viscous electrically conducting fluid impinging on a porous flat plate with heat transfer are investigated. An external uniform magnetic field and a uniform suction or injection are applied normal to the plate which is maintained at a constant temperature. Numerical solution for the governing nonlinear equations is obtained.


Sign in / Sign up

Export Citation Format

Share Document