scholarly journals Flexural, Tensile and Compressibility Behavior of Self Compacting Concrete by using Glass Fibers

“Fiber Reinforced Self Compacting Concrete” (FRSCC) is composed of cement, different sizes of coarse and fine aggregates, which integrate with fiber. In this current investigation, M40 grade Self Compacting Concrete reinforced with glass fibers has been developed using the Nan Su method. Fresh state and hardened state properties of Glass Fiber Reinforced Self Compaction Concrete are studied for glass fibers of different aspect ratio (875, 1285 & 1714) and percentage of volume fraction (0, 0.25, 0.5, 0.75 & 1). From the investigation carried out it is found that incorporation of glass fibers of aspect ratio 1285 and percentage of volume fraction 0.5 to SCC attains better compressive and flexural strength compared to other mixtures and also incorporation of glass fibers of aspect ratio 1285 and percentage of volume fraction 0.75 to SCC attains better split tensile strength compared to other mixtures.

Self compacting concrete achieves compaction by itself without using mechanical vibration techniques. Addition of fibers to SCC results in increased performance mainly in flexure, and also in compressive strength. In this study both the flow and strength properties of single Fiber and blended fiber reinforced self compacting concrete are examined in comparison with control self compacting concrete. crimpled steel fibers having size of 0.45mm diameter x 12.5mm length (aspect ratio 27.7) and 0.45mm diameter x 20 mm length (aspect ratio 44.44) are used in the SCC mix at various percentages by weight of cement i.e. 0%, 2%, 4% and 6%. From the obtained results it can be seen that there is aadverse affect on flow properties. There is a moderate increase in the compressive strength, split tensile strength and considerable increase in the flexural strength of the self compacting concrete using the blended fibers at different percentages i.e. at 2% and 4%, when compared to the single fiber reinforced self compacting concrete.


2020 ◽  
Vol 170 ◽  
pp. 06018
Author(s):  
Sandeep L. Hake ◽  
S. S. Shinde ◽  
Piyush K. Bhandari ◽  
P. R. Awasarmal ◽  
B. D. Kanawade

Self Compacting Concrete (SCC) is a specially developed concrete for concreting under extreme condition of inaccessibility from heights. It is capable to flow under influence of its own weight. It could be used when encountered with dense reinforcement and complex structural design. Problem of segregation as well as bleeding is eliminated and vibration is not required for compaction. As concrete is strong in compression and weak in tension. Hence to make it strong in tension, discontinuous Anti-Crack high dispersion glass fibers are added. SCC mix prepared with addition of discontinuous glass fibers is called as Glass Fiber reinforced Self Compacting Concrete (GFRSCC). In this paper an experimental study has been carried out to check the effect of Anti-Crack high dispersion glass fibers on the compressive strength, split tensile strength and flexural strength of SCC. The result show that, as compared to the Normal SCC, the compressive strength of GFRSCC increases by 2.80% and 12.42%, the split tensile strength of GFRSCC increases by 4.47% and 25.12% and the flexural strength of SCC increases by 6.57% and 14.34% when the Cem-FIL Anti-Crack HD glass fibers were added as 0.25% and 0.50% respectively by the weight of total cementitious material contents. The addition of 0.25% Cem-FIL Anti-Crack HD glass fibers to SCC has not much affect on the workability of Normal SCC. Whereas, addition of 0.50% Cem-FIL Anti-Crack HD glass fibers reduces the workability of SCC.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1666-1675
Author(s):  
Shubbar J. Kadhim

In this literature review steel fibers reinforced self-compacting concrete properties in fresh and hardened states and factors effecting on them were studied. In spite of high workability of self- compacting concrete, using of steel fibers depending on their length, aspect ratio, shapes and volume fraction can cause detrimental effects on it. Using of steel fibers improves hardened properties especially flexural and post peak performance, and this improvement depends on how fibers can distribute and orientate in fresh state.  The better hardened properties can obtain when fibers aligned and orientated in the direction parallel to tensile stress.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 264
Author(s):  
G J. Prasannaa Venkatesh ◽  
S S.Vivek ◽  
G Dhinakaran

Self-compacting concrete (SCC) is the flowable concrete which tends to fill the formwork under its weight without external compaction. In the present research, 9 different SCC mixes in binary blend along with control SCC and conventional vibrated concrete (CVC) mixes were developed. In binary combination, cement was partially replaced by SF from 7 to 21%, MK from 10 to 30% and GGBS from 20 to 60%. For the above 9 combinations of SCC mixes, the basic rheological properties test namely slump flow and T500 were carried out in the fresh state of SCC. The flowability was achieved using Superplasticizer and viscosity modifying admixture (VMA), added by the percentage of the weight of cement. In hardened state, the compressive strength of the cube specimens and the split tensile strength of the cylinder specimens were carried out.  


2019 ◽  
Vol 8 (2) ◽  
pp. 8-15
Author(s):  
H. R. Arun Kumar ◽  
B. Shivakumaraswamy

Self Compacting Concrete is a material used in the construction that has excellent deformability in the fresh state and high resistance of segregation, and can be replaced and compacted under its self-weight without applying vibration which leads to substantial advantages related to better homogeneity, enhancement of working environment and improvement in the productivity by increasing the speed of construction. Concrete can be formulated with high compressive strength but always has lower tensile strength. Tensile strength and other properties of concrete can be enhanced by adding fibers due to which the workability of concrete mix reduces and in order to achieve the desired Workability super-plasticizers is added. In the present work the use of fibrofor fiber in the production of self-compacting concrete (SCC) has been studied to identify how fresh and hardened properties of SCC are affected by the addition of fibers. The fibrofor fiber of 19mm standard length is incorporated into the SCC mixtures as 0.5kg/m3, 1.0kg/m3, 1.5kg/m3of concrete. Test on fresh SCC like slump Flow test, T50, V-Funnel test, J-Ring slump test and L-Box test were performed for an understanding of flow of SCC and tests on hardened properties like flexural strength, compressive strength and split tensile strength have been conducted to identify the hardened properties of SCC produced with fibrofor fiber. A comparative study between plain concrete, SCC without fiber and SCC with fiber has been done. Mix design for M40 grade concrete has been done according to EFNARC guidelines. The results reveal that the use of fibro for fiber decreases the workability but increases the mechanical properties of SCC. The optimum volume fraction of fibrofor fiber is determined as 1kg/m3 considering the optimized flexural strength and split tensile strength based properties of SCC. Due to increase in strength properties of fiber reinforced SCC that can be used for pavement construction and various other structures such as buildings, water retaining structures, reservoir structures and tunnel etc.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2013 ◽  
Vol 594-595 ◽  
pp. 629-633 ◽  
Author(s):  
Behzad Nematollahi ◽  
Jay Sanjayan ◽  
Jessie Xia Hui Chai ◽  
Tsui Ming Lu

This paper evaluates the effects of glass fiber addition on the properties of fresh and hardened fly ash based geopolymer concrete (GPC) activated by 8 M NaOH solution (28.6%) + Na2SiO3 (71.4%) with a SiO2/Na2O ratio of 2.0. Glass fibers at the dosages of 0.50%, 0.75%, 1.00% and 1.25% by volume of concrete were added to the GPC mix. The properties of fresh and hardened glass fiber reinforced fly ash based GPC in terms of workability, density, compressive and flexural strengths were compared with those of the fly ash based GPC without using glass fiber. The experimental results indicated that inclusion of the glass fibers resulted in decrease of the workability but increase of the density, compressive and flexural strengths of the fly ash based GPC with increased fiber content.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
A. Mataram

Polypropylene (PP) including a type of plastic which ranks second on the most number of types of plastic waste after the type of High Density Polyethylene (HDPE). Glass fibers have superior mechanical properties of natural fibers. Because it has good mechanical properties, glass fibers currently plays an important role in the use of composite reinforcement. Mechanical properties of glass fiber owned and PP waste in environmental conditions that more conditions, it can be utilized as a composite reinforcement and matrix materials. This research was conducted by of injection molding method. The comparison between the volume fraction of the glass fiber matrix of type PP plastic waste with variation 0% fibers 100% matrixs, 10% fibers 90% matrixs, 20% fibers 80% matrixs, 30% fibers 70% matrixs, 40% fibers 60% matrixs, and 50 % fibers 50% matrixs. The optimum conditions obtained in this study was the comparison of variation occurs in 50% fibers volume fractions of 50% matrixs were: tensile stress was 24.30 N/mm2, tensile strain was 13.60%.


Sign in / Sign up

Export Citation Format

Share Document