scholarly journals Effect of Epoxy Coating on Structural Steel Section under Tension

Structural steel connections are one of the most critical components of any steel structure as the cross-sectional area of steel sections reduces due to bolt holes. Failure of a structural connection may lead to failure of entire steel structure. Many researchers have tried to improve the connections previously by gluing fiber polymers at the connection. In this research glue or epoxy has been used around the bolt holes to simplify the process of using fiber polymers with steel. Epoxy is a combination of resin and hardener. It is proposed here to strengthen the structural steel connection in new structures and also in existing structures by applying a thin coat of suitable epoxy around the bolt hole. Thin steel plate with hole at the centre was tested under tensile load and results for ultimate load, breaking load, corresponding stresses and displacements obtained. Another steel plate with same geometry was then epoxy coated around the hole and same test was conducted on this specimen. Results for yield, ultimate, breaking loads and corresponding stresses and displacements recorded. The load-displacement curve is generated for both the cases and compared. The ultimate load bearing capacity of the plate increased in tension slightly after epoxy coating. Significant increase in breaking load observed as the thickness of epoxy layer was increased. Increase in the ductility of the composite plate is seen as increase in displacement is visible. There was considerable reduction of average stress around the center hole. The results indicate that structures can be safer against total failure and will give adequate warning before collapse.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed S. D. Al-Ridha ◽  
Ali F. Atshan ◽  
Kamal Sh. Mahmoud ◽  
Qusai Kh. Hameed

In this research, four steel beams were fabricated and tested to understand the influence of their strengthening (by using carbon fiber) with various span lengths on load deflection, load-strain, and ultimate load responses. All tested beams have the same cross-sectional area, and they are all strengthened by using intermediate stiffeners and cover steel plate at top flange to insure that failure will occur at the bottom flange. The tested steel beams are divided into two groups according to their clear span lengths 1400 and 1900 mm, and each group is subdivided into two beam cases based on whether they are strengthened by carbon fiber or not. From this study, it was found that the load deflection and load-strain curves for the beams strengthened by carbon fiber are stiffer than the original beams (without carbon fiber) with similar clear span lengths (this behavior was more obvious with smaller lengths). Moreover, the load deflection and load-strain responses have shown that beams became stiffer when the effective length is reduced (with and without carbon fiber), and this behavior was more apparent with the beams strengthened by carbon fiber. On the contrary, from the results of ultimate load of the beams, it can be concluded that the percentage of increase in ultimate load for the beam strengthened by carbon fiber is increased with the decrease in its span length. One could also conclude that when the effective length decreases, the ultimate load was increased and the percentage of this increasing is magnified with the presence of carbon fiber.


2021 ◽  
Vol 14 (3) ◽  
pp. 141-151
Author(s):  
Khalid Ibrahim ◽  
Ahmed A. Mansor ◽  
Bilal J. Noman ◽  
Wisam D. Salman ◽  
Ahlam S. Mohammed

In recent years, new methods have developed utilizing steel plates instead of deformed steel bar reinforcement in the concrete beams. This paper presents the utilization of a new proposed approach for replacing the main flexural reinforcement concrete beams by steel checker plates of (6mm) thickness. Four reinforced concrete beams were cast and tested under two-point load. All beams had the same cross-sectional area of reinforcement and the dimensions of 210 cm in length, 35 cm in height and 25cm in width. The result show there was a reduction in crack load, yield load, and ultimate load of steel plate as compared to steel bar, Whereas increased with increasing cross-sectional area of the steel. Once, the increment in crack load and yield load of steel plate were 25.5% and 16,67% more than steel bar whereas the same increment was found in ultimate load for both steel bar and steel plate. The measured crack load and ductility for steel plate was 16.7% more than steel bar when increasing cross-sectional area of steel. The deflection past of failure for steel plate has a considerable deflection before failure than steel bar. Finally, the observations show cracks have been much wider and less in range for all steel plate samples in comparison with the steel bar.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


2017 ◽  
Vol S (1) ◽  
pp. 47-55
Author(s):  
Mohd Yazmil Md. Yatim ◽  
◽  
Mohd Reza Azmi ◽  
Yew Ling Lau ◽  
Muhammad ‘Ariff Putra Ansaruddin Agus ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xibing Hu ◽  
Rui Chen ◽  
Yuxuan Xiang ◽  
Yafang Chen ◽  
Qingshan Li

Steel structures are usually damaged by disasters. According to the influence law of the damage on the elastic modulus of steel obtained by the mechanical test of damaged steel, the average elastic moduli of H-section steel members were analyzed. The equations for calculating the average elastic moduli of damaged H-section steel members at different damage degrees were obtained. By using the analytical cross-sectional method, the cross-sectional M-Φ-P relationships and the dimensionless parameter equations of the H-sections in the full-sectional elastic distribution, single-sided plastic distribution, and double-sided plastic distribution were derived. On the basis of the cross-sectional M-Φ-P relationships and dimensionless parameters of actual steel members, the approximate calculation equations for the damaged cross sections were obtained. The Newmark method was used to analyze the deformation of damaged steel columns. Analytical results show good agreement with the test results. The equations and methods proposed in this study have high computational accuracy, and these can be applied to the cross-sectional M-Φ-P relationships and deformation calculation of damaged steel members.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 753 ◽  
Author(s):  
Fangyuan Xu ◽  
Yuanli Chen ◽  
Xianglong Zheng ◽  
Rujin Ma ◽  
Hao Tian

To study the corrosion degradation of cable wires in a bridge’s life, this research work created an accelerated corrosion test device, which sought to identify an optimal constant strain level. An accelerated corrosion test was carried out and the corroded specimens were scanned using super depth 3D microscopy technology. Mass loss and minimum cross-sectional diameter was measured to understand the degradation characteristics of cable wires at variable strains and corrosion time. The variation of elastic modulus, yield load, and ultimate load of corroded wires, subjected to a tensile test, were analyzed. The experimental results illustrate that the average mass loss ratio of the corroded cable wires increases nonlinearly as corrosion time increases. The higher the stress level, the more serious the corrosion level. The minimum cross-sectional diameter has good correlation with corrosion time and stress level. The elastic modulus of wires does not change significantly with the increase of corrosion time. Yield load and ultimate load decreases with the increase of strain level, and the rates of decline under different strains are nonlinear.


Sign in / Sign up

Export Citation Format

Share Document