scholarly journals Sentiment Analysis using LSTM

Extracting the sentiment of the text using machine learning techniques like LSTM is our area of concern. Classifying the movie reviews using LSTM is our problem statement. The reviews dataset is taken from the IMDB movie review dataset. Here we will classify a review based on the memory in the neural network of a LSTM cell state. Movie reviews often contain sensible content which describe the movie. We can manually decide whether a movie is good or bad by going through these reviews. Using machine learning approach we are classifying the movie reviews such that we can say that a movie is good or bad. LSTM is effective than many other techniques like RNN and CNN.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3174 ◽  
Author(s):  
Renato Torres ◽  
Orlando Ohashi ◽  
Gustavo Pessin

Driver distraction is one of the major causes of traffic accidents. In recent years, given the advance in connectivity and social networks, the use of smartphones while driving has become more frequent and a serious problem for safety. Texting, calling, and reading while driving are types of distractions caused by the use of smartphones. In this paper, we propose a non-intrusive technique that uses only data from smartphone sensors and machine learning to automatically distinguish between drivers and passengers while reading a message in a vehicle. We model and evaluate seven cutting-edge machine-learning techniques in different scenarios. The Convolutional Neural Network and Gradient Boosting were the models with the best results in our experiments. Results show accuracy, precision, recall, F1-score, and kappa metrics superior to 0.95.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Zhao Zhang ◽  
Yun Yuan ◽  
Xianfeng (Terry) Yang

Accurate and timely estimation of freeway traffic speeds by short segments plays an important role in traffic monitoring systems. In the literature, the ability of machine learning techniques to capture the stochastic characteristics of traffic has been proved. Also, the deployment of intelligent transportation systems (ITSs) has provided enriched traffic data, which enables the adoption of a variety of machine learning methods to estimate freeway traffic speeds. However, the limitation of data quality and coverage remain a big challenge in current traffic monitoring systems. To overcome this problem, this study aims to develop a hybrid machine learning approach, by creating a new training variable based on the second-order traffic flow model, to improve the accuracy of traffic speed estimation. Grounded on a novel integrated framework, the estimation is performed using three machine learning techniques, that is, Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN). All three models are trained with the integrated dataset including the traffic flow model estimates and the iPeMS and PeMS data from the Utah Department of Transportation (DOT). Further using the PeMS data as the ground truth for model evaluation, the comparisons between the hybrid approach and pure machine learning models show that the hybrid approach can effectively capture the time-varying pattern of the traffic and help improve the estimation accuracy.


Pollution exposure and human health in the industry contaminated area are always a concern. The need for industrialization urges to concentrate on sustainable life of residents in the vicinity of the industrial area rather than opposing the industrialists. Literature in epidemiological studies reveal that air pollution is one of the major problems for health risks faced by residents in the industrial area. Main pollutants in industry related air pollution are particulate matter (PM2.5, PM10), SO2 , NO2 , and other pollutants upon the industry. Data for epidemiological studies obtained from different sources which are limited to public access include residents’ sociodemographic characters, health problems, and air quality index for personal exposure to pollutants. This combined data and limited resources make the analysis more complex so that statistical methods cannot compensate. Our review finds that there is an increase in literature that evaluates the connection between ambient air pollution exposure and associated health events of residents in the industrially polluted area using statistical methods, mainly regression models. A very few applies machine learning techniques to figure out the impact of common air pollution exposure on human health. Most of the machine learning approach to epidemiological studies end up in air pollution exposure monitoring, not to correlate its association with diseases. A machine learning approach to epidemiological studies can automatically characterize the residents’ exposure to pollutants and its associated health effects. Uniqueness of the model depends on the appropriate exhaustive data that characterizes the features, and machine learning algorithm used to build the model. In this contribution, we discuss various existing approaches that evaluate residents’ health effects and the source of irritation in association with air pollution exposure, focuses machine learning techniques and mathematical background for epidemiological studies for residents’ sustainable life.


Author(s):  
P. Rama Santosh Naidu ◽  
K.Venkata Ramana ◽  
G. Lavanya Devi

In recent days Machine Learning has become major study aspect in various applications that includes medical care where convenient discovery of anomalies in ECG signals plays an important role in monitoring patient's condition regularly. This study concentrates on various MachineLearning techniques applied for classification of ECG signals which include CNN and RNN. In the past few years, it is being observed that CNN is playing a dominant role in feature extraction from which we can infer that machine learning techniques have been showing accuracy and progress in classification of ECG signals. Therefore, this paper includes Convolutional Neural Network and Recurrent Neural Network which is being classified into two types for better results from considerably increased depth.


2020 ◽  
Vol 13 (9) ◽  
pp. 204
Author(s):  
Rodrigo A. Nava Lara ◽  
Jesús A. Beltrán ◽  
Carlos A. Brizuela ◽  
Gabriel Del Rio

Polypharmacologic human-targeted antimicrobials (polyHAM) are potentially useful in the treatment of complex human diseases where the microbiome is important (e.g., diabetes, hypertension). We previously reported a machine-learning approach to identify polyHAM from FDA-approved human targeted drugs using a heterologous approach (training with peptides and non-peptide compounds). Here we discover that polyHAM are more likely to be found among antimicrobials displaying a broad-spectrum antibiotic activity and that topological, but not chemical features, are most informative to classify this activity. A heterologous machine-learning approach was trained with broad-spectrum antimicrobials and tested with human metabolites; these metabolites were labeled as antimicrobials or non-antimicrobials based on a naïve text-mining approach. Human metabolites are not commonly recognized as antimicrobials yet circulate in the human body where microbes are found and our heterologous model was able to classify those with antimicrobial activity. These results provide the basis to develop applications aimed to design human diets that purposely alter metabolic compounds proportions as a way to control human microbiome.


2019 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Priyanka Rathord ◽  
Dr. Anurag Jain ◽  
Chetan Agrawal

With the help of Internet, the online news can be instantly spread around the world. Most of peoples now have the habit of reading and sharing news online, for instance, using social media like Twitter and Facebook. Typically, the news popularity can be indicated by the number of reads, likes or shares. For the online news stake holders such as content providers or advertisers, it’s very valuable if the popularity of the news articles can be accurately predicted prior to the publication. Thus, it is interesting and meaningful to use the machine learning techniques to predict the popularity of online news articles. Various works have been done in prediction of online news popularity. Popularity of news depends upon various features like sharing of online news on social media, comments of visitors for news, likes for news articles etc. It is necessary to know what makes one online news article more popular than another article. Unpopular articles need to get optimize for further popularity. In this paper, different methodologies are analyzed which predict the popularity of online news articles. These methodologies are compared, their parameters are considered and improvements are suggested. The proposed methodology describes online news popularity predicting system.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


2021 ◽  
Vol 13 (5) ◽  
pp. 969
Author(s):  
Ka Lok Chan ◽  
Ehsan Khorsandi ◽  
Song Liu ◽  
Frank Baier ◽  
Pieter Valks

In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural network model is validated against ground-based in situ air quality monitoring network measurements and regional chemical transport model (CTM) simulations. Neural network estimation of surface NO2 concentrations show good agreement with in situ monitor data with Pearson correlation coefficient (R) of 0.80. The results also show that the machine learning approach is performing better than regional CTM simulations in predicting surface NO2 concentrations. We also performed a sensitivity analysis for each input parameter of the neural network model. The validated neural network model is then used to estimate surface NO2 concentrations over Germany from 2018 to 2020. Estimated surface NO2 concentrations are used to investigate the spatio-temporal characteristics, such as seasonal and weekly variations of NO2 in Germany. The estimated surface NO2 concentrations provide comprehensive information of NO2 spatial distribution which is very useful for exposure estimation. We estimated the annual average NO2 exposure for 2018, 2019 and 2020 is 15.53, 15.24 and 13.27 µµg/m3, respectively. While the annual average NO2 concentration of 2018, 2019 and 2020 is only 12.79, 12.60 and 11.15 µµg/m3. In addition, we used the surface NO2 data set to investigate the impacts of the coronavirus disease 2019 (COVID-19) pandemic on ambient NO2 levels in Germany. In general, 10–30% lower surface NO2 concentrations are observed in 2020 compared to 2018 and 2019, indicating the significant impacts of a series of restriction measures to reduce the spread of the virus.


Author(s):  
Erick Omuya ◽  
George Okeyo ◽  
Michael Kimwele

Social media has been embraced by different people as a convenient and official medium of communication. People write messages and attach images and videos on Twitter, Facebook and other social media which they share. Social media therefore generates a lot of data that is rich in sentiments from these updates. Sentiment analysis has been used to determine opinions of clients, for instance, relating to a particular product or company. Knowledge based approach and Machine learning approach are among the strategies that have been used to analyze these sentiments. The performance of sentiment analysis is however distorted by noise, the curse of dimensionality, the data domains and size of data used for training and testing. This research aims at developing a model for sentiment analysis in which dimensionality reduction and the use of different parts of speech improves sentiment analysis performance. It uses natural language processing for filtering, storing and performing sentiment analysis on the data from social media. The model is tested using Naïve Bayes, Support Vector Machines and K-Nearest neighbor machine learning algorithms and its performance compared with that of two other Sentiment Analysis models. Experimental results show that the model improves sentiment analysis performance using machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document