scholarly journals Effect of Water and Ethanol as Coolant on the Performance of Peltier Module for Cold Storage

The steep rise in earth temperature also tends to rise in energy consumption for the sake of which demand for cooling also increases. Various cooling equipment’s are available within the market within different working principle, in which vapour compression system being the most common. But due to its design it is not easy to make it portable in which use of Peltier comes in place. Peltier being solid state in nature also has a benefit of being small in size as well it runs completely on Direct current. But due to lower efficiency of Peltier module the use is limited to some specific purpose. The heat dissipation of Peltier is higher than that of the absorption which intends require continuous removal of heat. For which liquid cooling outperform all in coefficient of performance. There are various coolants that can be incorporated within the system, in which water being the most common. So as per this research, water is compared to that of ethanol which being less common in terms of coolant. The study majorly concerned into various analytical part used for the calculation of COP of Peltier module in both the cases. Since our system doesn’t concern about overall system performance at present it is only concerned with the module efficiency so system COP was omitted in case of calculation and comparison. In the study it was obtained that for water and ethanol subjected to both natural and fan assisted radiator cooling a COP of 0.402, 0.413, 0.409 and 0.412 was obtained respectively for both coolant and cooling methods. Water was found the most suitable medium of cooling in regard to ethanol as due to tendency of heating up.

Author(s):  
Stephen A. Solovitz ◽  
Mehmet Arik

With the seamless advancements in modern electronics and shrinking thermal real estate, a number of candidate thermal technologies have been developed. As system designers evaluate these methods, they require unambiguous comparisons in order to properly assess the positives and negatives of advanced solutions. The most commonly used metrics, particularly thermal resistance, are limited in their applicability, especially because they account for only for single factors like the temperature of the heated device. To improve these comparisons, a new volumetric enhancement factor, EFv, is proposed, which can be justified based on lumped capacitance arguments. When coupled with the thermodynamic coefficient of performance, EFv allows a simple comparison that relates thermal performance, system input needs, and system size simultaneously. Using these metrics, several advanced technologies are compared, demonstrating that liquid cooling using microchannels can be in excess of 1000 times more effective than air cooling methods.


Author(s):  
Albert Chan ◽  
Jie Wei

Feasibility study on alternative cooling methods to air-cooling with heat sinks is provided in this paper. The study focuses on cooling of 64-bit microprocessor at 80nm technology node with projected heat dissipation of 200W. An example was presented to illustrate limitation of air-cooling for the 200W microprocessor using an all-Cu heat sink with tall fins. Three alternatives to air-cooling were studied in this work: liquid cooling, two-phase convective flow cooling and refrigeration cooling. Thermodynamic analysis was used to estimate operating conditions and fluid flow rates for each alternative. The information provides a preliminary basis for assessing capabilities and weaknesses among alternatives. Liquid and two-phase cooling simply transfer heat from high to low temperature. In contrast, refrigeration cooling operates as a heat pump, moving heat from low to high temperature. Refrigeration cooling offers capability to cool microprocessor (LSI) chip to temperatures below ambient or freezing. The drawback is more heat must be removed from the system. Liquid cooling operates at close to ambient pressure, while two-phase and refrigeration cooling operate at higher pressures. Challenges to implementation of all three alternatives include availability of low cost, miniature components (pumps or compressors, heat exchanger and condenser), designing for redundancy (or reliability) and ease of installation and field service. In terms of component availability and cost, liquid cooling is preferred choice, followed by two-phase and refrigeration cooling.


Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


Author(s):  
B Sairamakrishna ◽  
◽  
T Gopala Rao ◽  
N Rama Krishna ◽  
◽  
...  

This experimental investigation exemplifies the design and testing of diffuser at compressor inlet and nozzle at condenser outlet in vapour compression refrigeration system with the help of R134a refrigerant. The diffuser with divergence angle of 12°,14° and the nozzle with convergent angle 12°,14° are designed for same inlet and outlet diameters. Initially diffusers are tested at compressor inlet diffuser is used with inlet diameter equal to exit tube diameter of evaporator and outlet tube diameter is equal to suction tube diameter of the compressor. Diffuser helps to increases the pressure of the refrigerant before entering the compressor it will be helps to reduces the compression work and achieve higher performance of the vapour compression refrigeration system. Then nozzles are testing at condenser outlet, whereas nozzle inlet diameter equal to discharging tube diameter of condenser and outlet diameter equal to inlet diameter of expansion valve. Additional pressure drop in the nozzle helped to achieve higher performance of the vapour compression refrigeration system. The system is analyzes using the first and second laws of thermodynamics, to determine the refrigerating effect, the compressor work input, coefficient of performance (COP).


2020 ◽  
Vol 12 (19) ◽  
pp. 8178
Author(s):  
Fahid Riaz ◽  
Kah Hoe Tan ◽  
Muhammad Farooq ◽  
Muhammad Imran ◽  
Poh Seng Lee

Low-grade heat is abundantly available as solar thermal energy and as industrial waste heat. Non concentrating solar collectors can provide heat with temperatures 75–100 °C. In this paper, a new system is proposed and analyzed which enhances the electrical coefficient of performance (COP) of vapour compression cycle (VCC) by incorporating low-temperature heat-driven ejectors. This novel system, ejector enhanced vapour compression refrigeration cycle (EEVCRC), significantly increases the electrical COP of the system while utilizing abundantly available low-temperature solar or waste heat (below 100 °C). This system uses two ejectors in an innovative way such that the higher-pressure ejector is used at the downstream of the electrically driven compressor to help reduce the delivery pressure for the electrical compressor. The lower pressure ejector is used to reduce the quality of wet vapour at the entrance of the evaporator. This system has been modelled in Engineering Equation Solver (EES) and its performance is theoretically compared with conventional VCC, enhanced ejector refrigeration system (EERS), and ejection-compression system (ECS). The proposed EEVCRC gives better electrical COP as compared to all the three systems. The parametric study has been conducted and it is found that the COP of the proposed system increases exponentially at lower condensation temperature and higher evaporator temperature. At 50 °C condenser temperature, the electrical COP of EEVCRC is 50% higher than conventional VCC while at 35 °C, the electrical COP of EEVCRC is 90% higher than conventional VCC. For the higher temperature heat source, and hence the higher generator temperatures, the electrical COP of EEVCRC increases linearly while there is no increase in the electrical COP for ECS. The better global COP indicates that a small solar collector will be needed if this system is driven by solar thermal energy. It is found that by using the second ejector at the upstream of the electrical compressor, the electrical COP is increased by 49.2% as compared to a single ejector system.


2013 ◽  
Vol 651 ◽  
pp. 736-744
Author(s):  
Nandy Putra ◽  
H. Ardiyansya ◽  
Ridho Irwansyah ◽  
Wayan Nata Septiadi ◽  
A. Adiwinata ◽  
...  

Thermoelectric coolers have been widely applied to provide cooling for refrigerators in addition to conventional absorption and vapor compression systems. To increase heat dissipation in the thermoelectric cooler’s modules, a heat pipe can be installed in the system. The aim of this study is to develop a thermoelectric heat pipe-based (THP) refrigerator, which consists of thermoelectric coolers that are connected by heat pipe modules to enhance heat transfer. A comparative analysis of the THP prototype and conventional refrigerator with vapor compression, absorption and thermoelectric systems is also presented. The prototype system has a faster cooling down time and a higher coefficient of performance than the absorption system but still lower than vapor compression system


Author(s):  
Mayumi Ouchi ◽  
Yoshiyuki Abe ◽  
Masato Fukagaya ◽  
Takashi Kitagawa ◽  
Haruhiko Ohta ◽  
...  

Energy consumption in data centers has seen a drastic increase in recent years. In data centers, server racks are cooled down in an indirect way by air-conditioning systems installed to cool the entire server room. This air cooling method is inefficient as information technology (IT) equipment is insufficiently cooled down, whereas the room is overcooled. The development of countermeasures for heat generated by IT equipment is one of the urgent tasks to be accomplished. We, therefore, proposed new liquid cooling systems in which IT equipment is cooled down directly and exhaust heat is not radiated into the server room. Three cooling methods have been developed simultaneously. Two of them involve direct cooling; a cooling jacket is directly attached to the heat source (or CPU in this case) and a single-phase heat exchanger or a two-phase heat exchanger is used as the cooling jacket. The other method involves indirect cooling; heat generated by CPU is transported to the outside of the chassis through flat heat pipes and the condensation sections of the heat pipes are cooled down by coolant with liquid manifold. Verification tests have been conducted by using commercial server racks to which these cooling methods are applied while investigating five R&D components that constitute our liquid cooling systems: the single-phase heat exchanger, the two-phase heat exchanger, high performance flat heat pipes, nanofluid technology, and the plug-in connector. As a result, a 44–53% reduction in energy consumption of cooling facilities with the single-phase cooling system and a 42–50% reduction with the flat heat pipe cooling system were realized compared with conventional air cooling system.


Sign in / Sign up

Export Citation Format

Share Document