scholarly journals Design of Composite I-Beam Section to Prevent Web-Flange Junction Failure and Improving Its Axial Load Carrying Capacity

Most of the chemical industries are used with Polyurethane (PU) coated steel sample which is found that some chemical reaction and rusted in acidic bath solution becomes a problem in industry. For such problems composite materials can be of good solution which does not possess any reaction with working fluids (acids in our case). With composites there is complexity of manufacturing and high cost involvement, so as to avoid those simplified approach is used to get Flat plates made of Glass fiber reinforced in epoxy which is best solution for any acidic bath as it possesses high resistance to any reaction with itself. Glass fiber plates are cut into the size of dimension and with the help of adhesives joint the WFJ of I-Beam, there are two different types of adhesives used, araldite 2015 and Hundsman araldite are used. The hundsman araldite is found to get better performance of Web-Flange junction (WFJ) joint. Finite element analysis (FEA) is used to get initial validation and further it’s observed that Hundsman araldite failure strength on the web-flange junction is better. Also, additional cleat used with 4 mm, 12 mm for increasing the Web-Flange junction (WFJ) area to improve the Load carrying capacity of the Beam. The experimental analysis results clearly indicate that the emersion of the reinforced epoxy glass-fiber in the acidic bath solution for a certain period, there is no any reaction formed in the acidic bath and improved the behavior of the specimen. Results from FEA and experimental test have shown good correlations are obtained with improvement of failure strength on WFJ

Author(s):  
Atsushi Yamaguchi

Boilers and pressure vessels are heavily used in numerous industrial plants, and damaged equipment in the plants is often detected by visual inspection or non-destructive inspection techniques. The most common type of damage is wall thinning due to corrosion under insulation (CUI) or flow-accelerated corrosion (FAC), or both. Any damaged equipment must be repaired or replaced as necessary as soon as possible after damage has been detected. Moreover, optimization of the time required to replace damaged equipment by evaluating the load carrying capacity of boilers and pressure vessels with wall thinning is expected by engineers in the chemical industrial field. In the present study, finite element analysis (FEA) is used to evaluate the load carrying capacity in T-joints with wall thinning. Burst pressure is a measure of the load carrying capacity in T-joints with wall thinning. The T-joints subjected to burst testing are carbon steel tubes for pressure service STPG370 (JIS G3454). The burst pressure is investigated by comparing the results of burst testing with the results of FEA. Moreover, the maximum allowable working pressure (MAWP) of T-joints with wall thinning is calculated, and the safety margin for the burst pressure is investigated. The burst pressure in T-joints with wall thinning can be estimated the safety side using FEA regardless of whether the model is a shell model or a solid model. The MAWP is 2.6 MPa and has a safety margin 7.5 for burst pressure. Moreover, the MAWP is assessed the as a safety side, although the evaluation is too conservative for the burst pressure.


1993 ◽  
Vol 20 (4) ◽  
pp. 564-573 ◽  
Author(s):  
R. O. Foschi ◽  
F. Z. Yao

This paper presents a reliability analysis of wood I-joists for both strength and serviceability limit states. Results are obtained from a finite element analysis coupled with a first-order reliability method. For the strength limit state of load-carrying capacity, multiple failure modes are considered, each involving the interaction of several random variables. Good agreement is achieved between the test results and the theoretical prediction of variability in load-carrying capacity. Finally, a procedure is given to obtain load-sharing adjustment factors applicable to repetitive member systems such as floors and flat roofs. Key words: reliability, limit state design, wood composites, I-joist, structural analysis.


Author(s):  
Te Pei ◽  
Tong Qiu ◽  
Jeffrey A. Laman

Abstract The present study comprehensively evaluates the improvement in lateral load-carrying capacity of steel pipe piles by adding steel plates (fins) at grade level. This configuration of steel fin pile foundations (SFPFs) is effective for applications where high lateral loads are encountered and rapid pile installation is advantageous. An integrated finite element analysis (FEA) was conducted. The FEA utilized an Abaqus model, first developed to account for the nonlinear soil-pile interaction, and then calibrated and validated against well-documented experimental and filed tests in the literature. The validated FEA model was subsequently used to conduct a parametric study to understand the effect of fin geometry on the load transfer mechanism and the response of SFPFs subjected to lateral loading at pile head. The behavior of SFPFs at different displacement levels and load levels was studied. The effect of the relative density of soil on the performance of SFPFs was also investigated. Based on the numerical simulation results, the optimal fin width for maximum improvement in lateral load-carrying capacity was suggested and the underlining mechanism affecting the efficiency of fins was explained.


2011 ◽  
Vol 71-78 ◽  
pp. 898-902
Author(s):  
Yuan Qing Wang ◽  
Jong Su Sung ◽  
Yong Jiu Shi

Composite slab with steel sheeting deck is considered a continuous slab when it is under a constructional situation. Nevertheless, many recent researches are focused on simply supported slab. In order to determine the load carrying capacity regarding various rebar ratio on negative moment region, a numerical analysis was carried out by using finite element analysis. The result of analysis shows that the reinforced steel rebar increases load carrying capacity. Moreover, it has shown that the reinforced length of steel rebar also affect the load carrying capacity.


Author(s):  
Yogesh K S

Pile foundation is one of the effective forms of deep foundation. This is to be used where the load has to be transferred to deeper layers of soil and it can with stand uplift forces in foundations in expansive soil and also in case of floating foundations. The finite element method is one of the most versatile and comprehensive numerical technique which can be used for analysis of structures or solids of complex shapes and complicated boundary conditions. There are different variables which influence the load carrying capacity of pile foundation. But only some of those have significant influence on load carrying capacity. Here those variables are considered and the variation of load carrying capacity with the change in value of those variables is observed. Those variables are pile length and pile diameter, analysis of pile foundation was carried out to determine the ultimate load carrying capacity of pile for different lengths and diameters in cohesive soil, the corresponding settlement was also determined.


Author(s):  
Michael Bach ◽  
Xin Wang ◽  
Robert Bell

In this paper, the fracture behaviour of hollow cylinders with internal circumferential crack under tensile loading is examined extensively. Finite element analysis of the cracked cylinders is conducted to determine the fracture parameters including stress intensity factor, T-stress, and J-integral. Linear elastic finite element analysis is conducted to obtain K and T-stress, and elastic plastic analysis is conducted to obtain fully plastic J-integrals. A wide range of cylinder geometries are studied, with cylinder thickness ratios of ri/ro = 0.2 to 0.8 and crack depth ratio a/t = 0.2 to 0.8. These fracture parameters are then used to construct conventional and constraint-based failure assessment diagrams (FADs) to determine the maximum load carrying capacity of cracked cylinders. It is demonstrated that these tensile loaded cylinders with circumferential cracks are under low constraint conditions, and the load carrying capacity are higher when the low constraint effects are properly accounted for, using constraint-based FADs, comparing to the predictions from the conventional FADs.


2013 ◽  
Vol 8-9 ◽  
pp. 343-352
Author(s):  
Ionut Ovidiu Toma ◽  
Daniel Covatariu ◽  
Irina Lungu ◽  
Mihai Budescu

Numerical simulations based on the Finite Element Method (FEM) have become an important tool in studying various phenomena of interest to both researchers and practitioners alike. The recent advances in computational power coupled with accurate mathematical models have made FEM an indispensable tool for investigating complex loading states and material behavior that are frequently met in civil engineering. Strengthening of existing RC columns is becoming a pressing issue in the field of civil engineering due to the necessity of meeting new safety requirements for the buildings located in active seismic areas. Jacketing is a widely used method for strengthening of reinforced concrete columns showing good results in terms of increased strength and stiffness but with the addition of some unwanted effects amongst which the added dead weight is of primary importance in case of an earthquake. The paper presents the results obtained by means of Finite Element Analysis (FEA) on the load carrying capacity of short RC columns strengthened with a novel Cementitious material that may be the solution to lighter structures and lower added costs compared to other existing methods.


Author(s):  
Venkata M. K. Akula ◽  
Lance T. Hill

Induction pipe bends are essential multi-functional components in offshore applications performing not only as fluid conductors but also as structural members providing flexibility to the entire pipeline. The deforming mechanism of bends minimizes the effects of pipe walking, length changes due to thermal expansion/contraction, etc. However, the extent to which the bend deforms to counteract the pipeline deformation, prior to reaching plastic collapse, is dictated by the design variables. The pipe bend design variables include the geometry of the bend, the inelastic material properties, and the operating loads. The study of the influence of these variables is central to improving upon existing bend designs and is the focus of this research. The certification process for bends typically involves ensuring the pipe bending moment is within limits set by agencies such as DNV, ASME, etc. Closed form solutions for the bending moment do exist but they often do not consider the effects of large deformation and the material nonlinearity of the bends. Since it is impractical to perform physical tests for every possible design, numerical techniques such as the finite element methods are an attractive alternative. Furthermore, for a given bend design, the design variables are prone to deviation, due to manufacturing process, operating conditions, etc., which introduces variation in the structural response and the resulting bending moment. In this paper, a nonlinear finite element analysis of induction bends is discussed followed by a presentation of a simulation workflow and reliability analysis. The finite element analysis utilizes a nonlinear Abaqus model with an user-subroutine prescribing precise end loading and boundary conditions. The workflow utilizes the design exploration software, Isight, which automates the solution process. Thereafter, reliability analysis is performed by varying the design variables, such as bend angle, ovalization, etc. and the results of the simulation are presented. The objective is to illustrate a solution technique for predicting the induction bend load carrying capacity and to examine design robustness. An automated workflow is demonstrated which allows for quick design variable changes, there by potentially reducing design time. The reliability analysis allows analysts to measure the variation in the load carrying capacity resulting from the deviation of design variable specifications. These demonstrations are intended to emphasize that to ensure the success of a bend design, it is important to not only predict the load carrying capacity accurately but also to perform reliability analysis for the design.


2010 ◽  
Vol 163-167 ◽  
pp. 1910-1915
Author(s):  
Jing Gao ◽  
Bao Chun Chen

In order to better understand the behavior of CFST-CSW arch, experiment on two hingeless CFST-CSW arches are described in this paper, subjected to in-plane symmetrical and asymmetrical loading respectively. The experiment yield important information regarding the manifestation of the limit state and also afford an opportunity to verify finite element modeling techniques for use in a parametric study. The parametric study reveals that the load-carrying capacity is influenced by many factors including the rise-to-span ratio, slenderness ratio, loading cases and material properties.


Sign in / Sign up

Export Citation Format

Share Document