scholarly journals Identification of Diabetic Retinopathy from fundus images using CNNs

the Diabetic Retinopathy is the diabetes-mellitus to human vision that is the main cause of vision loss. The early stage detection of diabetic retinopathy is can play eminent role in the diabetes treatment. The fundus of retinal image is utilized to recognize the symptoms of diabetic retinopathy. Moreover, the above phenomena led us to propose this paper; here we propose segment based learning approach for identification of diabetic retinopathy. The segment based image level is required to obtain the identification of diabetic retinopathy images, the classifiers and features are equally learned from the data. Then, we adapt pre-trained CNN as the fine tune to achieve the segment level estimation of diabetic retinopathy. For identification of diabetic retinopathy, we achieve accuracy 96.97 and 98.46% at 20 and 30% and also achieve AUC (Area under Curve) 97.51 and 98.50 at 20 and 30% on the Kaggle dataset. Our proposed model outperforms much better than other models.

When pancreas fails to secrete sufficient insulin in the human body, the glucose level in blood either becomes too high or too low. This fluctuation in glucose level affects different body organs such as kidney, brain, and eye. When the complications start appearing in the eyes due to Diabetic Mellitus (DM), it is called Diabetic Retinopathy (DR). DR can be categorized in several classes based on the severity, it can be Microaneurysms (ME), Haemorrhages (HE), Hard and Soft Exudates (EX and SE). DR is a slow start process that starts with very mild symptoms, becomes moderate with the time and results in complete vision loss, if not detected on time. Early-stage detection may greatly bolster in vision loss. However, it is impassable to detect the symptoms of DR with naked eyes. Ophthalmologist harbor to the several approaches and algorithm which makes use of different Machine Learning (ML) methods and classifiers to overcome this disease. The burgeoning insistence of Convolutional Neural Network (CNN) and their advancement in extracting features from different fundus images captivate several researchers to strive on it. Transfer Learning (TL) techniques help to use pre-trained CNN on a dataset that has finite training data, especially that in under developing countries. In this work, we propose several CNN architecture along with distinct classifiers which segregate the different lesions (ME and EX) in DR images with very eye-catching accuracies.


Author(s):  
Manaswini Jena ◽  
Smita Prava Mishra ◽  
Debahuti Mishra

Background: Diabetic retinopathy is one of the complexities of diabetics and a major cause of vision loss worldwide which come into sight due to prolonged diabetes. For the automatic detection of diabetic retinopathy through fundus images several technical approaches have been proposed. The visual information processing by convolutional neural network makes itself more suitable due to its spatial arrangement of units. Convolutional Neural Networks are at their peak of development and best results can be gained by proper use of the technique. The local connectivity, parameter sharing and pooling of hidden units are advantageous for various predictions. Objective: Objective of this paper is to design a model for classification of diabetic retinopathy. Method: A fully convolutional neural network model is developed to classify the diseased and healthy fundus images. Here, proposed neural network consists of six convolutional layers along with rectified linear unit activations and max pooling layers. The absence of fully connected layer reduces the computational complexity of the model and trains faster as compared to traditional convolutional neural network models. Result and Conclusion: The validation of the proposed model is accomplished by training it with a publicly available High-Resolution Fundus image database. The model is also compared with various existing state-of-the-art methods which show competitive result as compared to these models. A behavioural study of different parameters of the network model is represented. The intelligence of our model lies in its ability to re-tune weight to overcome outliers encountered in future. The proposed model works well with satisfactory performance.


Author(s):  
Prakruthi Mandya Krishnegowda ◽  
Komarasamy Ganesan

<p>Diabetic retinopathy (DR) refers to a complication of diabetes and a prime cause of vision loss in middle-aged people. A timely screening and diagnosis process can reduce the risk of blindness. Fundus imaging is mainly preferred in the clinical analysis of DR. However; the raw fundus images are usually subjected to artifacts, noise, low and varied contrast, which is very hard to process by human visual systems and automated systems. In the existing literature, many solutions are given to enhance the fundus image. However, such approaches are particular and limited to a specific objective that cannot address multiple fundus images. This paper has presented an on-demand preprocessing frame work that integrates different techniques to address geometrical issues, random noises, and comprehensive contrast enhancement solutions. The performance of each preprocessing process is evaluated against peak signal-to-noise ratio (PSNR), and brightness is quantified in the enhanced image. The motive of this paper is to offer a flexible approach of preprocessing mechanism that can meet image enhancement needs based on different preprocessing requirements to improve the quality of fundus imaging towards early-stage diabetic retinopathy identification.</p>


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Author(s):  
Mohammad Shorfuzzaman ◽  
M. Shamim Hossain ◽  
Abdulmotaleb El Saddik

Diabetic retinopathy (DR) is one of the most common causes of vision loss in people who have diabetes for a prolonged period. Convolutional neural networks (CNNs) have become increasingly popular for computer-aided DR diagnosis using retinal fundus images. While these CNNs are highly reliable, their lack of sufficient explainability prevents them from being widely used in medical practice. In this article, we propose a novel explainable deep learning ensemble model where weights from different models are fused into a single model to extract salient features from various retinal lesions found on fundus images. The extracted features are then fed to a custom classifier for the final diagnosis of DR severity level. The model is trained on an APTOS dataset containing retinal fundus images of various DR grades using a cyclical learning rates strategy with an automatic learning rate finder for decaying the learning rate to improve model accuracy. We develop an explainability approach by leveraging gradient-weighted class activation mapping and shapely adaptive explanations to highlight the areas of fundus images that are most indicative of different DR stages. This allows ophthalmologists to view our model's decision in a way that they can understand. Evaluation results using three different datasets (APTOS, MESSIDOR, IDRiD) show the effectiveness of our model, achieving superior classification rates with a high degree of precision (0.970), sensitivity (0.980), and AUC (0.978). We believe that the proposed model, which jointly offers state-of-the-art diagnosis performance and explainability, will address the black-box nature of deep CNN models in robust detection of DR grading.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1620 ◽  
Author(s):  
Ganjar Alfian ◽  
Muhammad Syafrudin ◽  
Norma Latif Fitriyani ◽  
Muhammad Anshari ◽  
Pavel Stasa ◽  
...  

Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension–diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.


Author(s):  
Jaskirat Kaur ◽  
Deepti Mittal

Diabetic retinopathy, a symptomless medical condition of diabetes, is one of the significant reasons of vision impairment all over the world. The prior detection and diagnosis can decrease the occurrence of acute vision loss and enhance efficiency of treatment. Fundus imaging, a non-invasive diagnostic technique, is the most frequently used mode for analyzing retinal abnormalities related to diabetic retinopathy. Computer-aided methods based on retinal fundus images support quick diagnosis, impart an additional perspective during decision-making, and behave as an efficient means to assess response of treatment on retinal abnormalities. However, in order to evaluate computer-aided systems, a benchmark database of clinical retinal fundus images is required. Therefore, a representative database comprising of 2942 clinical retinal fundus images is developed and presented in this work. This clinical database, having varying attributes such as position, dimensions, shapes, and color, is formed to evaluate the generalization capability of computer-aided systems for diabetic retinopathy diagnosis. A framework for the development of benchmark retinal fundus images database is also proposed. The developed database comprises of medical image annotations for each image from expert ophthalmologists corresponding to anatomical structures, retinal lesions and stage of diabetic retinopathy. In addition, the substantial performance comparison capability of the proposed database aids in analyzing candidature of different methods, and subsequently its usage in medical practice for real-time applications.


2016 ◽  
Vol 28 (06) ◽  
pp. 1650046
Author(s):  
V. Ratna Bhargavi ◽  
Ranjan K. Senapati

Rapid growth of Diabetes mellitus in people causes damage to posterior part of eye vessel structures. Diabetic retinopathy (DR) is an important hurdle in diabetic people and it causes lesion formation in retina due to retinal vessel structures damage. Bright lesions (BLs) or exudates are initial clinical signs of DR. Early BLs detection can help avoiding vision loss. The severity can be recognized based on number of BLs formed in the color fundus image. Manually diagnosing a large amount of images is time consuming. So a computerized DR grading and BLs detection system is proposed. In this paper for BLs detection, curvelet fusion enhancement is done initially because bright objects maps to largest coefficients in an image by utilizing the curvelet transform, so that BLs can be recognized in the retina easily. Then optic disk (OD) appearance is similar to BLs and vessel structures are barriers for lesion exact detection and moreover OD falsely classified as BLs and that increases false positives in classification. So these structures are segmented and eliminated by thresholding techniques. Various features were obtained from detected BLs. Publicly available databases are used for DR severity testing. 260 fundus images were used for the performance evaluation of proposed work. The support vector machine classifier (SVM) used to separate fundus images in various levels of DR based on feature set extracted. The proposed system that obtained the statistical measures were sensitivity 100%, specificity 95.4% and accuracy 97.74%. Compared to existing state-of-art techniques, the proposed work obtained better results in terms of sensitivity, specificity and accuracy.


2007 ◽  
Vol 4 (3_suppl) ◽  
pp. S9-S11 ◽  
Author(s):  
Paul M Dodson

Diabetic eye disease is the major cause of blindness and vision loss among working-age people in developed countries. Microangiopathy and capillary occlusion underlie the pathogenesis of disease. While laser treatment is regarded as the standard therapy, intensive medical management of glycaemia and hypertension is also a priority in order to reduce the risk of diabetic retinopathy. Recent data have prompted a re-evaluation of the role of lipid-modifying therapy in reducing diabetic retinopathy. The Fenofibrate Intervention for Event Lowering in Diabetes (FIELD) study demonstrated a significant 30% relative reduction in the need for first retinal laser therapy in patients with (predominantly early-stage) type 2 diabetes treated with fenofibrate 200 mg daily, from 5.2% with placebo to 3.6% with fenofibrate, p=0.0003. The benefit of fenofibrate was evident within the first year of treatment. These promising data justify further evaluation of the mechanism and role of fenofibrate, in addition to standard therapy, in the management of diabetic retinopathy.


Sign in / Sign up

Export Citation Format

Share Document