scholarly journals Non-Linear Static Analysis of RCC Framed Structures with and Without Infill Walls

The concept of an earthquake is becoming an exceptional study in our use because no longer a particular area can be targeted as an earthquake-resistant area. So, the main motif of any structural engineer during the design is to design a structure that could cope with seismic pressure successfully. On this note, non-linear static pushover analysis has become a prominent tool for the structural design and evaluation of RC elements. In this project G + 5, G + 9, G + 5 with infill walls and G + 9 with infill walls RCC framed structures have been analyzed by the use of SAP 2000 v19. The structures are designed as in keeping with IS 1893(Part 1): 2002 for earthquake forces in seismic zone IV. The use of the equivalent strut approach for modeling the infill walls is adopted and strut is designed in accordance with FEMA-356. Non-linear Static pushover analysis is performed on the designed RCC framed structures with and without infill walls. And pushover results are used to evaluate structural performance under design earthquake load, and code requirements are discussed.

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


Author(s):  
M Keshava Murthy ◽  
Ashwini L K

Pushover analysis is an elegant tool to visualise the performance level of a building under a given earthquake. The purpose of the paper is to summarize the Non Linear static Pushover analysis of medium rise RC bare frame and high rise RC infilled structure with soft stories at different levels using ETABS software. Results concluded that due to the introduction of soft stories in the higher level the intensity of hinge formation becomes lower and lower and at the same time displacement and base shear increases


Seismic analysis is considered as an important parameter for any structural design. The strength and ductility of frame members in seismic design depends on the response reduction factor. In this paper four symmetrically framed structures are considered of different heights under the critical zone condition. The primary emphases of this work is regarding calculation of response reduction factor values attained from designing RC framed structures. The results are computed by applying non-linear static pushover analysis. SAP-2000 software is used for analyzing the non-linear behaviour of the structure.


CANTILEVER ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 91-100
Author(s):  
Saifulloh Fatah Pangestu ◽  
M Mirza Abdillah Pratama

In Indonesia, earthquake-resistant structures are governed by SNI as design codes, which are updated on a regular basis. As a result, existing buildings with outdated requirements must be reviewed so that the building's performance may be assessed in light of the most recent codes. Pushover analysis and direct displacement-based design are used to characterize the real condition of the building in order to assess its performance. The 7-story reinforced concrete building structure in this study was designed according to SNI 03-2847-2002 and SNI-1726-2002. This structure will be evaluated utilizing the FEMA 440 and FEMA 356 procedures, as well as SNI 1726:2019. The results show that the structure meets the minimal performance limit criteria (which is life safety) in terms of displacement and drift values from the pushover analysis, based on FEMA 356 and FEMA 440 performance levels. The evaluation indicates better structural response parameter values (R, Ω0, and Cd) than that of SNI 1726:2019, indicating that the building performance is good and capable of withstanding the design earthquake load.


Sign in / Sign up

Export Citation Format

Share Document