scholarly journals Performance Enhancement in MIMO-OFDMA System

The systematic advancement in wireless communication has provided many significant aspects towards communication domain. However, obtaining the high-speed data transmission is still a biggest concern in various multimedia-based applications. Multiple Input Multiple Output - Orthogonal Frequency Division Multiplexing Access (MIMO-OFDMA) based communication is widespread towards research area. In addition, the combination of MIMO-OFDMA with the steering antenna can lead to improved communication efficiency and offer diversity gain without changing radio frequency (RF). This paper introduces systems for power allocation and resource allocation by A) low complex compressive channel approximation (CSCE) and b) combined parallel cancelation and Viterbi encoding / decoding (PCVed). The outcome of compressive sensing based system brings reduced Bit Error Rate (BER) and less computational complexity while the performance analysis PCVed with different approaches for 4x4 transmitter and receiver.

2018 ◽  
Vol 7 (3) ◽  
pp. 1185 ◽  
Author(s):  
Padarti Vijaya Kumar ◽  
Venkateswara Rao Nandanavanam

Massive MIMO has gained much attention with the increase in the high speed data communication. The problem of peak-to-average power ratio (PAPR) is considered, the detrimental aspects in OFDM based massive multiple-input multiple-output (MIMO) downlink systems. The previous works done in reduction of PAPR problem using convex optimization are computationally inefficient. We considered Bayesian approach to mitigate PAPR by utilizing the redundant degrees of freedom (DOF) of the transmit array, which effectively reduced the level of PAPR. The performance or numerical results indicate the applied algorithm achieved a good improvement over the existing techniques in terms of the PAPR reduction.  


Author(s):  
Sarmad K. Ibrahim ◽  
Saif A. Abdulhussien

<span>The downlink multi-user precoding of the multiple-input multiple-output (MIMO) method includes optimal channel state information at the base station and a variety of linear precoding (LP) schemes. Maximum ratio transmission (MRT) is among the common precoding schemes but does not provide good performance with massive MIMO, such as high bit error rate (BER) and low throughput. The orthogonal frequency division multiplexing (OFDM) and precoding schemes used in 5G have a flaw in high-speed environments. Given that the Doppler effect induces frequency changes, orthogonality between OFDM subcarriers is disrupted and their throughput output is decreased and BER is decreased. This study focuses on solving this problem by improving the performance of a 5G system with MRT, specifically by using a new design that includes weighted overlap and add (WOLA) with MRT. The current research also compares the standard system MRT with OFDM with the proposed design (WOLA-MRT) to find the best performance on throughput and BER. Improved system results show outstanding performance enhancement over a standard system, and numerous improvements with massive MIMO, such as best BER and throughput. Its approximately 60% more throughput than the traditional systems. Lastly, the proposed system improves BER by approximately 2% compared with the traditional system.</span>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Author(s):  
Hussein A. Leftah ◽  
Huda N. Alminshid

<p>Multiple input-multiple output (MIMO) is a multipath diversity exploring approach which is emerged with orthogonal frequency division multiplexing (OFDM) to produce MIMO-OFDM that is widely used in wireless communications. This paper presents a discrete Hart-ley transform (DHT) precoded MIMO-OFDM system over multipath frequency-selective fading channel with large-size quadrature amplitude modulation (16-QAM, 64-QAM and 256-QAM). A mathematical models for the BER and channel capacity over mutlipath fading channels are also derived in this paper. Average Bit-error-rate (BER) and channel capacity of the presented system is considered and compared with that of the traditional MIMO-OFDM. Simulation results shows that the transmission performance and channel capacity of the proposed schemes is better than that of the traditional MIMO-OFDM without a pre-coder.</p>


Author(s):  
Anupma Gupta ◽  
Ankush Kansal ◽  
Paras Chawla

Abstract A compact multiple input multiple output (MIMO) antenna operating at 2.45 GHz industrial scientific and medical band is presented for wearable devices. Open-end slotting is used to miniaturize the antenna dimensions. Inverted U-shaped ground stub is incorporated to reduce mutual coupling. On-body performance is analyzed on a three-layered equivalent tissue phantom model. The wide bandwidth of 300 MHz and port isolation of 30 dB are obtained from measured results. The antenna shows the efficiency of 40% and directivity of 4.56 dBi when placed at a gap of “s” = 4 mm from the body. Broadside radiation pattern and low specific absorption rate make the antenna suitable for on-body communication. Further, diversity performance is measured in terms of envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CCL). The value of ECC is 0.025, DG is 9.98 dB, and CCL is 0.12 bits/s/Hz at 2.45 GHz. Antenna robustness is examined by bending the structure at different radii along the x-axis and y-axis. Performance of the proposed structure is reliable with structural deformation.


Sign in / Sign up

Export Citation Format

Share Document