scholarly journals A novel method for joint- PAPR mitigation in OFDM-based massive MIMO downlink systems

2018 ◽  
Vol 7 (3) ◽  
pp. 1185 ◽  
Author(s):  
Padarti Vijaya Kumar ◽  
Venkateswara Rao Nandanavanam

Massive MIMO has gained much attention with the increase in the high speed data communication. The problem of peak-to-average power ratio (PAPR) is considered, the detrimental aspects in OFDM based massive multiple-input multiple-output (MIMO) downlink systems. The previous works done in reduction of PAPR problem using convex optimization are computationally inefficient. We considered Bayesian approach to mitigate PAPR by utilizing the redundant degrees of freedom (DOF) of the transmit array, which effectively reduced the level of PAPR. The performance or numerical results indicate the applied algorithm achieved a good improvement over the existing techniques in terms of the PAPR reduction.  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


The systematic advancement in wireless communication has provided many significant aspects towards communication domain. However, obtaining the high-speed data transmission is still a biggest concern in various multimedia-based applications. Multiple Input Multiple Output - Orthogonal Frequency Division Multiplexing Access (MIMO-OFDMA) based communication is widespread towards research area. In addition, the combination of MIMO-OFDMA with the steering antenna can lead to improved communication efficiency and offer diversity gain without changing radio frequency (RF). This paper introduces systems for power allocation and resource allocation by A) low complex compressive channel approximation (CSCE) and b) combined parallel cancelation and Viterbi encoding / decoding (PCVed). The outcome of compressive sensing based system brings reduced Bit Error Rate (BER) and less computational complexity while the performance analysis PCVed with different approaches for 4x4 transmitter and receiver.


Author(s):  
Maharshi K. Bhatt ◽  
Bhavin S. Sedani ◽  
Komal Borisagar

This paper analytically reviews the performance of massive multiple input multiple output (MIMO) system for communication in highly mobility scenarios like high speed Railways. As popularity of high speed train increasing day by day, high data rate wireless communication system for high speed train is extremely required. 5G wireless communication systems must be designed to meet the requirement of high speed broadband services at speed of around 500 km/h, which is the expected speed achievable by HSR systems, at a data rate of 180 Mbps or higher. Significant challenges of high mobility communications are fast time-varying fading, channel estimation errors, doppler diversity, carrier frequency offset, inter carrier interference, high penetration loss and fast and frequent handovers. Therefore, crucial requirement to design high mobility communication channel models or systems prevails. Recently, massive MIMO techniques have been proposed to significantly improve the performance of wireless networks for upcoming 5G technology. Massive MIMO provide high throughput and high energy efficiency in wireless communication channel. In this paper, key findings, challenges and requirements to provide high speed wireless communication onboard the high speed train is pointed out after thorough literature review. In last, future research scope to bridge the research gap by designing efficient channel model by using massive MIMO and other optimization method is mentioned.


Extended use of spectrum increased the number of users; this was the major cause to introduce Cognitive Radio Networks (CRN) which is designed to access the available spectrum effectively. Advanced telecommunication technology that is fifth-generation (5G) is inbuilt in CRNs. Fusion Center (FC) in CRN plays an important role in decision making for allocating available spectrum. A novel FC rotation (FCR) method is applied over FC to mitigate the occurrence of interference. Massive-Multiple Input Multiple Output (MaMi) system is used to enhance network performances to accommodate the huge participation of users by means of having a large number of antennas. Existing research works in CRN based 5G network fails to decrease intersymbol interference (ISI) and Peak-to-Average Power Ratio (PAPR). A novel Massive MIMO SC – FDMA ES is proposed in this paper to mitigate high PAPR values to enhance network performance. Our proposed work in CRN is experimentally designed using Network Simulator 3 from which the performances are evaluated. The extensive simulation result shows betterment in terms of channel capacity, reduction of PAPR, bit error rate and spectral efficiency.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


1999 ◽  
Vol 36 (03) ◽  
pp. 157-170
Author(s):  
Jerrold N. Sgobbo ◽  
Michael G. Parsons

The U.S. Coast Guard's 270-ft Medium Endurance Cutter (WMEC) operates with an active fin stabilization system. This system was designed using a one-degree-of-freedom (1-DOF) model in the roll direction. The controller was designed separate from the heading autopilot. The effects of the rudders and their ability to produce a significant rolling moment were also neglected as well as the cross coupling of roll motions into other degrees of freedom. This paper studies the effects of the rudders on the rolling motion of the ship using a three-degree-of-freedom (3-DOF) model. A simple optimal heading autopilot is designed and combined with the existing fin roll controller to investigate the effects of the rudders on the roll motions of this class of vessel. A rudder roll controller and a multiple input-multiple output (MIMO) rudder/fin controller are designed as well. Significant roll reduction can be achieved using the MIMO rudder/fin controller.


IET Networks ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 299-306 ◽  
Author(s):  
Rna Ghallab ◽  
Mona Shokair ◽  
Atef Abou El‐Azm ◽  
Ali Sakr ◽  
Waleed Saad ◽  
...  

2018 ◽  
Vol 39 (2) ◽  
pp. 107
Author(s):  
Victor Croisfelt Rodrigues ◽  
Taufik Abrão

The demand for higher data rates can be satisfied by the spectral efficiency (SE) improvement offered by Massive multiple-input multiple-output (M-MIMO) systems. However, the pilot contamination remains as a fundamental issue to obtain the paramount SE in such systems. This propitiated the research of several methods to mitigate pilot contamination. One of these procedures is based on the coordination of the cells, culminating in proposals with multiple pilot training phases. This paper aims to expand the results of the original paper, whereby the concepts of large pilot training phases were offered. The evaluation of such method was conducted through more comprehensible numerical results, in which a large number of antennas were assumed and more rigorous SE expressions were used. The channel estimation approaches relying on multiple pilot training phases were considered cumbersome for implementation and an uninteresting solution to overcome pilot contamination; contradicting the results presented in the genuine paper.


Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 746-775
Author(s):  
Raghda Abdulbaqi Mugher

The (OFDM) defined as orthogonal multiplex frequency distribution system is very popular of the design of waveforms for high speed data communication in 4G wireless technology. In addition, a filter-based waveform design, such as filtered OFDM (F-OFDM), has been proposed as a candidate for the 5G technology waveform in order to overcome the current weaknesses of OFDM. And 5G requirements. The high average peak ratio (PAPR) is taken as the main obstacle to OFDM and remains an inherent problem with F-OFDM since both systems support orthogonal transmission. In this study, a new efficient algorithm called groupings of complex variants of PTS (G-C-PTS) was proposed to reduce the level of high complexity in PTS. G-C-PTS can significantly reduce complexity with a slight decrease in PAPR performance compared to traditional PTS. In addition, comparisons were made between (OFDM) and (F-OFDM) systems based on the GC-PTS algorithm for PAPR, bit error rate (BER) and spectral power density (PSD) to validate the proposed algorithm. Partial transmit sequence (PTS) procedure is considered one of the production strategies to decrease the high peak-to-average power ratio (PAPR) in the 4G waveform plane, for example multiplex frames for symmetric repetition division (OFDM).


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 519
Author(s):  
Gianmarco Romano

Massive multiple-input multiple-output (mMIMO) communication systems and the use of millimeter-wave (mm-Wave) bands represent key technologies that are expected to meet the growing demand of data traffic and the explosion of the number of devices that need to communicate over 5G/6G wireless networks [...]


Sign in / Sign up

Export Citation Format

Share Document