scholarly journals Geometrical Model of Fixed Parts and Movable Parts Projected Shaft Star of SIRM by GA and Conventional Method to Minimize the Pulling Force Fluctuation

In this article, focus on modeling of switched reluctance motor (SiRM) The flux assets of the iron, the number of phases, and the number of projected portion per phase all have a irregular properties on this Devices. These possessions, along with the sizing of the Device cover and internal scopes, kind the Device project an insight-intensive struggle. Enlargement of pulling force density, power output, and lowering location of pulling force fluctuation, heat escalation, audio sound. A design organization that exploits the desired features and reduces the undesirable effects is obtainable here. Static and dynamic system-level simulations and finite-element analysis have been accepted out for a 3-phase 6/4 2.4-kW SIRM, at various rated electrons flow assessment for both conventional design and genetic procedure design methods and the results were verified using standard reproductions. The result seems to be stirring. The results demonstrate suitable projected shaft star Curve and movable parts Curve of a pulling force –fluctuation minimized SiRM drive.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2805 ◽  
Author(s):  
Jordi Garcia-Amorós

Linear switched reluctance motors are a focus of study for many applications because of their simple and sturdy electromagnetic structure, despite their lower thrust force density when compared with linear permanent magnet synchronous motors. This study presents a novel linear switched reluctance structure enhanced by the use of permanent magnets. The proposed structure preserves the main advantages of the reluctance machines, that is, mechanical and thermal robustness, fault tolerant, and easy assembly in spite of the permanent magnets. The linear hybrid reluctance motor is analyzed by finite element analysis and the results are validated by experimental results. The main findings show a significant increase in the thrust force when compared with the former reluctance structure, with a low detent force.


2021 ◽  
pp. 107754632110260
Author(s):  
Zhaoxue Deng ◽  
Xu Li ◽  
Tianqin Liu ◽  
Shuen Zhao

Considering the negative vertical dynamics effect of switched reluctance motor on an in-wheel motor driving system, this article presents a modeling and suppression method for unbalanced radial force of the in-wheel motor driving system. To tease out the coupling relationship within the in-wheel motor driving system, this investigation, respectively, explores the principle of unbalanced radial force and the coupling relationship between rotor eccentricity and road excitation based on the suspension response model with unbalanced radial force under road excitation. The switched reluctance motor nonlinear analytical model was fitted by the Fourier series, and its radial electromagnetic force was modeled and analyzed by the Maxwell stress tensor method. To mitigate the influence of radial electromagnetic force fluctuation and unbalanced radial force amplitude value under eccentricity condition on the in-wheel motor driving system, the elitist non-dominated sorting genetic algorithm was adopted to improve radial electromagnetic force fluctuation and unbalanced radial force amplitude value of the switched reluctance motor. The simulation results show that the proposed optimization method can suppress the radial electromagnetic force fluctuation and unbalanced radial force amplitude value, and the negative effect of vertical dynamics of the in-wheel motor driving system is conspicuously mitigated.


Author(s):  
Xiaodong Sun ◽  
Jiangling Wu ◽  
Shaohua Wang ◽  
Kaikai Diao ◽  
Zebin Yang

Purpose The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work. Design/methodology/approach The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM. Findings It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems. Originality/value This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5162
Author(s):  
Jordi Garcia-Amorós ◽  
Marc Marín-Genescà ◽  
Pere Andrada ◽  
Eusebi Martínez-Piera

In this paper, a novel two-phase linear hybrid reluctance actuator with the double-sided segmented stator, made of laminated U cores, and an interior mover with permanent magnets is proposed. The permanent magnets are disposed of in a way that increases the thrust force of a double-sided linear switched reluctance actuator of the same size. To achieve this objective, each phase of the actuator is powered by a single H-bridge inverter. To reduce the detent force, the upper and the lower stator were shifted. Finite element analysis was used to demonstrate that the proposed actuator has a high force density with low detent force. In addition, a comparative study between the proposed linear hybrid reluctance actuator, linear switched reluctance, and linear permanent magnet actuators of the same size was performed. Finally, experimental tests carried out in a prototype confirmed the goals of the proposed actuator.


Sign in / Sign up

Export Citation Format

Share Document