scholarly journals Structural and Bonding Behavior Analysis of Microwave Sintered ZnO:Co materials

In this present study, Zn1-xCoxO (x = 0.0, 0.04 & 0.06) samples were synthesized using conventional solid state sintering process and characterized by PXRD and SEM. The structural analysis was done using Rietveld profile refinement technique. The chemical bonding features and nature between Zn and O atoms was analyzed by charge distribution studies. The bonding between Zn and O is clearly visible in the three- dimensional and two-dimensional MEM maps. One- dimensional charge density distribution analysis clearly reveals that the characteristics of the bond. MEM results were also correlated with the PXRD parameters.

Author(s):  
Yu-Jin Cui ◽  
Feng Su ◽  
Wei-Jun Jin

Two new co-crystals, tetraiodoethylene–phenanthridine (1/2), 0.5C2I4·C13H9N (1) and tetraiodoethylene–benzo[f]quinoline (1/2), 0.5C2I4·C13H9N (2), were obtained from tetraiodoethylene and azaphenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography. In the crystal structures, C—I...π and C—I...N halogen bonds link the independent molecules into one-dimensional chains and two-dimensional networks with subloops. In addition, the planar azaphenanthrenes lend themselves to π–π stacking and C—H...π interactions, leading to a diversity of supramolecular three-dimensional structural motifs being formed by these interactions. Luminescence studies show that co-crystals 1 and 2 exhibit distinctly different luminescence properties in the solid state at room temperature.


2002 ◽  
Vol 12 (4) ◽  
pp. 1044-1052 ◽  
Author(s):  
Amitava Choudhury ◽  
S. Neeraj ◽  
Srinivasan Natarajan ◽  
C. N. R. Rao

2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


Author(s):  
Matthew J. Montgomery ◽  
Thomas J. O'Connor ◽  
Joseph M. Tanski

The two title compounds are isomers of C6H3ClN2containing a pyridine ring, a nitrile group, and a chloro substituent. The molecules of each compound pack together in the solid state with offset face-to-face π-stacking, and intermolecular C—H...Nnitrileand C—H...Npyridineinteractions. 4-Chloropyridine-2-carbonitrile, (I), exhibits pairwise centrosymmetric head-to-head C—H...Nnitrileand C—H...Npyridineinteractions, forming one-dimensional chains, which are π-stacked in an offset face-to-face fashion. The intermolecular packing of the isomeric 6-chloropyridine-2-carbonitrile, (II), which differs only in the position of the chloro substituent on the pyridine ring, exhibits head-to-tail C—H...Nnitrileand C—H...Npyridineinteractions, forming two-dimensional sheets which are π-stacked in an offset face-to-face fashion. In contrast to (I), the offset face-to-face π-stacking in (II) is formed between molecules with alternating orientations of the chloro and nitrile substituents.


Author(s):  
V. Vlasenko ◽  
A. Shiryaeva

New quasi-two-dimensional (2.5D) approach to description of three-dimensional (3D) flows in ducts is proposed. It generalizes quasi-one-dimensional (quasi-1D, 1.5D) theories. Calculations are performed in the (x; y) plane, but variable width of duct in the z direction is taken into account. Derivation of 2.5D approximation equations is given. Tests for verification of 2.5D calculations are proposed. Parametrical 2.5D calculations of flow with hydrogen combustion in an elliptical combustor of a high-speed aircraft, investigated within HEXAFLY-INT international project, are described. Optimal scheme of fuel injection is found and explained. For one regime, 2.5D and 3D calculations are compared. The new approach is recommended for use during preliminary design of combustion chambers.


2003 ◽  
Vol 9 (10) ◽  
pp. 1159-1187 ◽  
Author(s):  
A. Nandi ◽  
S. Neogy

Vibration-based diagnostic methods are used for the detection of the presence of cracks in beams and other structures. To simulate such a beam with an edge crack, it is necessary to model the beam using finite elements. Cracked beam finite elements, being one-dimensional, cannot model the stress field near the crack tip, which is not one-dimensional. The change in neutral axis is also not modeled properly by cracked beam elements. Modeling of such beams using two-dimensional plane elements is a better approximation. The best alternative would be to use three-dimensional solid finite elements. At a sufficient distance away from the crack, the stress field again becomes more or less one-dimensional. Therefore, two-dimensional plane elements or three-dimensional solid elements can be used near the crack and one-dimensional beam elements can be used away from the crack. This considerably reduces the required computational effort. In the present work, such a coupling of dissimilar elements is proposed and the required transition element is formulated. A guideline is proposed for selecting the proper dimensions of the transition element so that accurate results are obtained. Elastic deformation, natural frequency and dynamic response of beams are computed using dissimilar elements. The finite element analysis of cracked rotating shafts is complicated because of the fact that elastic deformations are superposed on the rigid-body motion (rotation about an axis). A combination of three-dimensional solid elements and beam elements in a rotating reference is proposed here to model such rotors.


Sign in / Sign up

Export Citation Format

Share Document