scholarly journals The Optimization of Parameters for the Spray Drying Process of Wood Apple Extract using Response Surface Methodology

Wood apple is a fruit, which containing many nutrient values and bioactive compounds. In the present study, The response surface methodology (RSM) was used to optimize the input variables of the spray drying process. Three coded independent variables viz. input dry substance concentration (X1 ), input flow (X2 ), spray drying temperature (X3 ), corresponds to the encoded variables Z1 (from 20 to 24 %), Z2 (from 5.35 to 6.72 mL/min.), Z3 (from 140 to 160oC). The R2 correlation coefficient between the experimental values and the predicted values from the model up to 0.967 indicated the satisfactorily of the predicted model. Three optimal input parameters to get the highest efficiency of dry matter recovery (51.80 %) were derived at Z1 = 24 %, Z2 = 5.35 mL/min., Z3 = 160oC. The powder product obtained has a good sensory quality, high contents of antioxidants and nutritional components.

2011 ◽  
Vol 396-398 ◽  
pp. 1269-1272 ◽  
Author(s):  
Mu Xin Han ◽  
Dong Mei Li ◽  
Yu Jie Feng ◽  
Yu Fei Tan

To enhance further treatment efficiency of the sludge, a process microwave drying of sludge was optimized using response surface methodology (RSM). A quadratic polynomial mathematical model was developed through Box-Behnken experimental design to describe the relationship between tested variables and moisture content of sludge. The experimental values were found to be in accordance with the predicted values, the correlation coefficient is 0.9203(P < 0.001). Estimated optimum parameters were as follows: The sludge: tree bark is 58:1, microwave power is 630w and processing time is 5.32 minutes. Under these conditions, a lowest moisture content of sludge (49.12%) after microwave drying was reached.


2014 ◽  
Vol 3 (4) ◽  
pp. 21-33
Author(s):  
M.A. Waheed ◽  
O.D. Samuel ◽  
B.O. Bolaji ◽  
O.U. Dairo

The present work deals with the production of biodiesel from Nigerian restaurant waste cooking oil (NRWCO) and the optimization of the parameters that influences the alkaline transesterification of NRWCO into biodiesel using response surface methodology. The optimization parameters like oil: oil/methanol molar ratio, catalyst amount and reaction time were done using Design Expert 6.06 software. It was found that the maximum yield of biodiesel was obtained in 79.8 min for 1: 5.9, oil: methanol ratio, 1.2 wt. % KOH amount. A total of 20 experiments using Central Composite Design were carried out. The R2, adjusted R2 and predicted R2 values were 0.982, 0.9657 and 0.9088 respectively show that the experimental values are in good agreement with the predicted values. The properties of biodiesel at the optimized parameters, thus, produced confirm to the ASTM, EN and BIS specifications, making it an ideal alternative fuel for diesel engine.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Sudesh S ◽  
Meenakshi M ◽  
Sheeja R.Y ◽  
Thanapalan Murugesan

In the present work, crab shell was used as the biosorbent to remove copper from aqueous solution. Batch experiments were performed at different initial copper concentration of copper solutions (1-40 g/l), initial pH (2-9), temperature (20-400°C), and biosorbent dosages (2-10 g/l). The maximum removal of copper using crab shell occurred at a pH of 3 and at a temperature of 400°C using an optimum biosorbent dosage of 5 g/l. A mathematical model was proposed to identify the effects of the individual interactions of these variables on the biosorption of copper. The results have been modeled using response surface methodology using a Box-Behnken design. The response surface method was developed using three levels (-1, 0, +1) with the above mentioned four factors. The second order quadratic regression model fitted the experimental data with Prob > F to be < 0.0001. The experimental values were found to be in good agreement with the predicted values, with a satisfactory correlation coefficient of R2 = 0.9999.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Ghasemzadeh ◽  
Hawa Z. E. Jaafar

Response surface methodology was applied to optimization of the conditions for reflux extraction of Pandan (Pandanus amaryllifoliusRoxb.) in order to achieve a high content of total flavonoids (TF), total phenolics (TP), and high antioxidant capacity (AC) in the extracts. Central composite experimental design with three factors and three levels was employed to consider the effects of the operation parameters, including the methanol concentration (MC, 40%–80%), extraction temperature (ET, 40–70°C), and liquid-to-solid ratio (LS ratio, 20–40 mL/g) on the properties of the extracts. Response surface plots showed that increasing these operation parameters induced the responses significantly. The TF content and AC could be maximized when the extraction conditions (MC, ET, and LS ratio) were 78.8%, 69.5°C, and 32.4 mL/g, respectively, whereas the TP content was optimal when these variables were 75.1%, 70°C, and 31.8 mL/g, respectively. Under these optimum conditions, the experimental TF and TP content and AC were 1.78, 6.601 mg/g DW, and 87.38%, respectively. The optimized model was validated by a comparison of the predicted and experimental values. The experimental values were found to be in agreement with the predicted values, indicating the suitability of the model for optimizing the conditions for the reflux extraction of Pandan.


2014 ◽  
Vol 67 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Masoumeh Izadi ◽  
Mohammad Hadi Eskandari ◽  
Mehrdad Niakousari ◽  
Shahram Shekarforoush ◽  
Mahammad Amin Hanifpour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document