scholarly journals CFD Analysis of Heat Pipe Heat Exchanger to Predict the Temperature Distribution.

The Computational Fluid Dynamic (CFD) Analysis of Heat Pipe Heat Exchanger (HPHE) is done to predict the temperature distribution using ANSYS-ICEM modular/meshing and FLUENT solver. In this study, HPHE is modeled in four different cases with and without fillet near the inlet and outlet sections including (standard HPHE, with enlarge inlet and outlet sections, with horizontal plate near the entrance zone, using three different cone of angles (36.03 degree, 30 degree and 45 degree)). The mass flow rate 3.75kg/sec of hot air or gas as given at the inlet section. The Standard k- -Realizable turbulence model was used for fluid flow in simulations. The magnitude and location of the temperature distribution, velocity, and turbulence kinetic energy are influenced by prescribed conditions. However, pressure drop is reduced up-to certain extent (due to change in turbulence kinetic energy) for all the cases in which round corner/fillet at the inlet and outlet section was made in the model. At the same time jet type flow is also reduced because of reduction in axial velocity and increment of Y & Z directional velocity which tends to expansion of flow toward the y and z direction.

2011 ◽  
Vol 396-398 ◽  
pp. 897-903
Author(s):  
Shi Mei Sun ◽  
Jing Min Zhou

A High Temperature Heat Pipe Heat Exchanger Consists of Heat Pipes Filled with Different Working Media inside. in Different Temperature Zones, Heat Pipes with Different Working Media Are Linked Safely by Controlling the Vapor Temperature, the Media inside the Heat Pipe. the Vapor Temperature inside the Pipe Is Heavily Affected by the Temperature Field of Fluid outside the Heat Pipes and the Heat Transfer Performance inside the Heat Pipe, while the Heat Transfer Performance inside the Pipe in Turn Has a Bearing on the Temperature Distribution of Fluid outside the Pipe. to Coordinate the Fluid Temperature Distribution both inside and outside the Pipes, Study on Local Heat Transfer Enhancement Has Been Conducted on High Temperature Heat Pipe Heat Exchanger in this Article, and Cfd Computational Software Was Used to Make Rational and Accurate Prediction of Fluid Temperature Distribution both inside and outside the Pipes, so as to Provide Economic and Reliable Design Basis for High Temperature Heat Pipe Heat Exchanger.


2016 ◽  
Author(s):  
Z. Abdullah ◽  
B. Phuoc Huynh ◽  
A. Idris

Continuous increase in electricity tariff and its power consumption has brought an alteration towards the development of cooling technologies. Cooling technology with normal vapor compression cycle rely on electricity to increase and decrease the pressure, hence the temperature, within its cycle. Alternative technology such as passive cooling, using heat pipe heat exchangers is being applied to the refrigeration cycle components to assist in temperature reduction of the cooling process. The supply and return air temperatures of an evaporator and condenser are being precooled by passive cooling equipment to assist in reducing the compressor work done. The objective of this study is to investigate and simulate a force-ventilation of an air around a circular air-cooled-condenser tube for an air conditioning system. The incoming air supplied to the condenser is assisted by air that had been precooled by a heat pipe heat exchanger attached 100mm from the condenser. This study investigates the effect of the heat pipe heat exchanger in removing the energy and its temperature, in assisting the condenser heat removal process. In a normal refrigeration cycle, the heat of a condenser at a constant pressure at 109200Pa and a temperature of 319K are reduced by the force convection ventilation to 315K. The temperature of the refrigerant in the tube is being reduced at constant pressure of 5K by a heat transfer exchange of ambient air and the condenser tube. This simulation showed the effect of a heat pipe heat exchanger attached before the condenser by using the computational fluid dynamic software. A condenser from a refrigeration cycle with refrigerant R134a is being simulated using CFD software. The condenser tube is a row of 5 copper tubes (9.5mm OD) in a vertical straight line exposed to an ambient air of 300K. A hot vapor refrigerant temperature leaving a compressor enters a condenser inlet at 319K and exit the outlet tube at a liquid temperature of 315K. The inlet and outlet pressures of the condenser tube are assumed constant throughout the process at 109200Pa. Using a computational fluid dynamic simulation, a normal condenser inlet and outlet air is being studied. The simulation results are then compared to a simulation of a condenser tube which had been attached to a heat pipe heat exchanger at the air inlet section. A 100mm air gap between the heat pipe heat exchanger and the condenser where the simulation of heat transfers is assumed to be the key process is discussed. The end result of the air outlet of the condenser and the effect of the heat pipe heat exchanger attached to it is discussed. ANSYS Fluent and CFD ACE+ software are being used to run the simulation and the results are presented in terms of the temperature contour, velocity vectors and flow patterns. It is found that the outlet temperature of the condenser reduced when a heat pipe heat exchanger is attached before the condenser. It is an advantage to use a heat pipe heat exchanger to increase the temperature difference between a refrigerant fluid at the inlet and outlet of the condenser. By increasing the heat transfer rate of the heat pipe and the condenser tube, hence lowering the condenser temperature output, the system capacity will increase.


2019 ◽  
Author(s):  
Sakil Hossen ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Azzam S. Salman ◽  
Titan C. Paul

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 589
Author(s):  
Qilu Chen ◽  
Yutao Shi ◽  
Zhi Zhuang ◽  
Li Weng ◽  
Chengjun Xu ◽  
...  

Heat pipe heat exchangers (HPHEXs) are widely used in various industries. In this paper, a novel model of a liquid–liquid heat pipe heat exchanger in a countercurrent manner is established by considering the evaporation and condensation thermal resistances inside the heat pipes (HPs). The discrete method is added to the HPHEX model to determine the thermal resistances of the HPs and the temperature change trend of the heat transfer fluid in the HPHEX. The established model is verified by the HPHEX structure and experimental data in the existing literature and demonstrates numerical results that agree with the experimental data to within a 5% error. With the current model, the investigation compares the effectiveness and minimum vapor temperature of the HPHEX with three types of HP diameters, different mass flow rates, and different H* values. For HPs with a diameter of 36 mm, the effectiveness of each is improved by about 0.018 to 0.029 compared to HPs with a diameter of 28 mm. The results show that the current model can predict the temperature change trend of the HPHEX well; in addition, the effects of different structures on the effectiveness and minimum vapor temperature are obtained, which improve the performance of the HPHEX.


Sign in / Sign up

Export Citation Format

Share Document