scholarly journals Research on the Machine Learning Algorithms on Heart Condition Predictions

Now-a-days Health care monitoring widely uses Internet of Things (IoT) and big data which is further integrated into wearable bio sensors. This paper is about finding the best algorithm for predicting the heart condition using different machine learning algorithms. In this we have also included the basic Artificial Neural Networks algorithm for predicting the heart condition of an individual. In this work we had predicted the persons heat conditions by knowing some key attributes. By increasing the use of machine learning algorithms, the accuracy of each algorithm is calculated and the quality and value of the health services increases efficiency. This is mainly about how different the algorithms predict and the accuracy of each algorithm. Here the ANN has the height accuracy when compared to all other machine learning algorithms like, SVM-ploy, SVM-RBF, Naïve Bayes, Decision tree, Random Forest, K-Nearest Neighbor.

Artificial intelligence is the technology that lets a machine mimic the thinking ability of a human being. Machine learning is the subset of AI, that makes this machine exhibit human behavior by making it learn from the known data, without the need of explicitly programming it. The health care sector has adopted this technology, for the development of medical procedures, maintaining huge patient’s records, assist physicians in the prediction, detection, and treatment of diseases and many more. In this paper, a comparative study of six supervised machine learning algorithms namely Logistic Regression(LR),support vector machine(SVM),Decision Tree(DT).Random Forest(RF),k-nearest neighbor(k-NN),Naive Bayes (NB) are made for the classification and prediction of diseases. Result shows out of compared supervised learning algorithms here, logistic regression is performing best with an accuracy of 81.4 % and the least performing is k-NN with just an accuracy of 69.01% in the classification and prediction of diseases.


Author(s):  
Sandy C. Lauguico ◽  
◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Rogelio Ruzcko Tobias ◽  
...  

The arising problem on food scarcity drives the innovation of urban farming. One of the methods in urban farming is the smart aquaponics. However, for a smart aquaponics to yield crops successfully, it needs intensive monitoring, control, and automation. An efficient way of implementing this is the utilization of vision systems and machine learning algorithms to optimize the capabilities of the farming technique. To realize this, a comparative analysis of three machine learning estimators: Logistic Regression (LR), K-Nearest Neighbor (KNN), and Linear Support Vector Machine (L-SVM) was conducted. This was done by modeling each algorithm from the machine vision-feature extracted images of lettuce which were raised in a smart aquaponics setup. Each of the model was optimized to increase cross and hold-out validations. The results showed that KNN having the tuned hyperparameters of n_neighbors=24, weights='distance', algorithm='auto', leaf_size = 10 was the most effective model for the given dataset, yielding a cross-validation mean accuracy of 87.06% and a classification accuracy of 91.67%.


2019 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Nicholas M. Enwright ◽  
Lei Wang ◽  
Hongqing Wang ◽  
Michael J. Osland ◽  
Laura C. Feher ◽  
...  

Barrier islands are dynamic environments because of their position along the marine–estuarine interface. Geomorphology influences habitat distribution on barrier islands by regulating exposure to harsh abiotic conditions. Researchers have identified linkages between habitat and landscape position, such as elevation and distance from shore, yet these linkages have not been fully leveraged to develop predictive models. Our aim was to evaluate the performance of commonly used machine learning algorithms, including K-nearest neighbor, support vector machine, and random forest, for predicting barrier island habitats using landscape position for Dauphin Island, Alabama, USA. Landscape position predictors were extracted from topobathymetric data. Models were developed for three tidal zones: subtidal, intertidal, and supratidal/upland. We used a contemporary habitat map to identify landscape position linkages for habitats, such as beach, dune, woody vegetation, and marsh. Deterministic accuracy, fuzzy accuracy, and hindcasting were used for validation. The random forest algorithm performed best for intertidal and supratidal/upland habitats, while the K-nearest neighbor algorithm performed best for subtidal habitats. A posteriori application of expert rules based on theoretical understanding of barrier island habitats enhanced model results. For the contemporary model, deterministic overall accuracy was nearly 70%, and fuzzy overall accuracy was over 80%. For the hindcast model, deterministic overall accuracy was nearly 80%, and fuzzy overall accuracy was over 90%. We found machine learning algorithms were well-suited for predicting barrier island habitats using landscape position. Our model framework could be coupled with hydrodynamic geomorphologic models for forecasting habitats with accelerated sea-level rise, simulated storms, and restoration actions.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bhagya M. Patil ◽  
Vishwanath Burkpalli

Cotton is one of the major crops in India, where 23% of cotton gets exported to other countries. The cotton yield depends on crop growth, and it gets affected by diseases. In this paper, cotton disease classification is performed using different machine learning algorithms. For this research, the cotton leaf image database was used to segment the images from the natural background using modified factorization-based active contour method. First, the color and texture features are extracted from segmented images. Later, it has to be fed to the machine learning algorithms such as multilayer perceptron, support vector machine, Naïve Bayes, Random Forest, AdaBoost, and K-nearest neighbor. Four color features and eight texture features were extracted, and experimentation was done using three cases: (1) only color features, (2) only texture features, and (3) both color and texture features. The performance of classifiers was better when color features are extracted compared to texture feature extraction. The color features are enough to classify the healthy and unhealthy cotton leaf images. The performance of the classifiers was evaluated using performance parameters such as precision, recall, F-measure, and Matthews correlation coefficient. The accuracies of classifiers such as support vector machine, Naïve Bayes, Random Forest, AdaBoost, and K-nearest neighbor are 93.38%, 90.91%, 95.86%, 92.56%, and 94.21%, respectively, whereas that of the multilayer perceptron classifier is 96.69%.


Author(s):  
T. Jhansi Rani ◽  
T. Jaya Vumesh ◽  
P. Saiteja ◽  
V. Ajay Kumar Reddy ◽  
M. Meghana

In our current generation we are very much habituated to many mobile services like communication, ecommerce etc. In mobile communication services SMS’s (Short Message Service’s) are very common and important services which we are using in personal purposes and profession. In these services some messages may cause spam attacks which is trap to users to access their personal information or attracting them to purchase a product from unauthorized websites. It is very easy for companies send any information or service or alert to their customers/users with these SMS API’s. Based on these services it is also possible for sending spam messages. So in this system we are using advance Machine Learning concepts for detection of the spam filtering in the SMS’s. In this system we are importing the dataset from UCI repository and for spam SMS detection we implementing machine learning classifiers like Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Neural Networks (NN) algorithms and with their metrics like accuracy, precision, recall and f-score. We calculate performances between there algorithms as well as we show the experiment results with visualization techniques and analyses which algorithm is best for spam SMS detection.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


2021 ◽  
Vol 11 (20) ◽  
pp. 9460
Author(s):  
Heechang Lee ◽  
Taeyoung Yoon ◽  
Chaeyun Yeo ◽  
HyeonYoung Oh ◽  
Yebin Ji ◽  
...  

The electrocardiogram (ECG) is the most commonly used tool for diagnosing cardiovascular diseases. Recently, there have been a number of attempts to classify cardiac arrhythmias using machine learning and deep learning techniques. In this study, we propose a novel method to generate the gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) from one-dimensional signals. From the GLCM and GLRLM, we extracted morphological features for automatic ECG signal classification. The extracted features were combined with six machine learning algorithms (decision tree, k-nearest neighbor, naïve Bayes, logistic regression, random forest, and XGBoost) to classify cardiac arrhythmias. Experiments were conducted on a 12-lead ECG database collected from Chapman University and Shaoxing People’s Hospital. Of the six machine learning algorithms, combining XGBoost with the proposed features yielded an accuracy of 90.46%, an AUC of 0.982, a sensitivity of 0.892, a precision of 0.900, and an F1 score of 0.895 and presented better results than wavelet features with XGBoost. The experimental results show the effectiveness of the proposed feature extraction algorithm.


Sign in / Sign up

Export Citation Format

Share Document