scholarly journals Underground Object Size Approximation using GPR Signal and Image Processing

This paper comprises a step wise method of approximating the size of an underground object using GPR (Ground Penetrating Radar). It involves more than just using predefined filters and techniques. Usage of Trivial method of mathematics to calculate the top surface dimensions of the buried objects is the main purpose of this paper. Problem that is faced that, only the presence of any object can be known using the GPR resource, but not exactly how to derive the size of the object using the same data. This method consists of a dual approach to the problem to make sure that the data that is being given out is accurate. The objectives of this paper are to use the GPR to calculate the top surface dimension of a buried object at a suitable depth according to the frequency. The steps that are incorporated include pre-processing of raw data, determination of ROI (Region of interest) from the pre-processed data, Application of appropriate filters for image processing and estimating surface area and depth of the concealed object. The main reason of this paper is to serve the purpose of detecting what is under the ground in a quick and simpler way using the algorithm proposed

2019 ◽  
Vol 12 (23) ◽  
pp. 80-89
Author(s):  
Israa J. Muhsin

  Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processing such as filtering. Where different filters like (DC adjustment, triangular FIR, delete mean trace, FIR) have been applied on output image as well as the simulation of the soil and the buried objects layers have been obtained using GPR simulation program.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 132
Author(s):  
Roger Tilley ◽  
Hamid Sadjadpour ◽  
Farid Dowla

Compositing of ground penetrating radar (GPR) scans of differing frequencies have been found to produce cleaner images at depth using the Gaussian mixture model (GMM) feature of the expectation-maximization (EM) algorithm. GPR scans at various heights (“Stand Off”), as well as ground-based scans, have been studied. In this paper, we compare the GPR response from a chirp excitation function-based radar with the response from the EM GMM algorithm compositing process, using the same mix of frequencies. A chirp excitation pulse was found to be effective in delineating the defined buried object, but the resulting image is less sharp than the GMM EM method.


Author(s):  
Peter M. Fischer ◽  
Patrik Klingborg ◽  
Fanny Kärfve ◽  
Fredrika Kärfve ◽  
C. Hagberg ◽  
...  

Determination of the complete occupational sequence of the site, including investigation of pre-12th century levels which were thoroughly studied by P. Åström since the 1970s, is the main task of the planned project. During the course of the expedition (NSCE11) in spring 2010 a ground-penetrating radar survey (GPR) was carried out at Dromolaxia Vizatzia/Hala Sultan Tekke in Area 6, leading to the discovery of a large Late Cypriote complex. The compound is bordered to the north by a substantial wall, against which nine rooms (so far) could be exposed. Two occupational phases have been verified but there are indications of a third. The suggested functions of the various structures of the most recent phase are: living, working, storage and administration spaces. The rich find contexts point to the production of textiles and metal objects, and the locally produced pottery is generally of a high quality. There are also many imports, mainly from the Mycenaean sphere of culture. The locally produced vessels from Phase 2 include the “Creature krater” which is a masterpiece of a high artistic standard. Another piece of elevated artistry is the piece of a “Warrior vase”.


2016 ◽  
Vol 17 (4) ◽  
pp. 362-370 ◽  
Author(s):  
Alexander Krainyukov ◽  
Igor Lyaksa

Abstract The paper is devoted to using ground penetrating radar (GPR) for the detection of tree roots in an urban area, since GPR allow detect the hidden objects in non invasive way. It is necessary exactly to know the growth direction, thickness and depth of the roots of the tree to confidently assert about the tree root influence on the technical condition of engineering objects and structures: of the buildings, of pavements, of roadway, of engineering communications and etc. The aim of the given research was experimentally to evaluation the possibilities of detection of tree roots in an urban area with the use of GPR on frequency 400 MHz and of algorithms of secondary processing of GPR signals. Results of interpretation of radar profile and evacuation of soil around tree show the possibility of detection of the tree roots and the determination of their parameters using one or two radar concentric profiles.


Sign in / Sign up

Export Citation Format

Share Document