scholarly journals Energy Storage System in Smart Homes of Smart City

The Nanogrid utilizes renewable energy sources, e.g. Solar PV, Wind, etc; which are stochastic in nature. Due to this nature, power reliability is the main issue. To increase the reliability of the power supply and proper utilization of the available resources, Nanogrid should either connected to the utility grid directly or it must have the proper energy storage system. Energy storage system fills the gap between consumers demand and renewable power generation; which is very important issue in technical and economical consideration. The Nanogrid gives new hope of ray to the people living in off grid areas. By using energy storage system we can increase their living standard and enhance socio-economical development. This paper proposes the selection of the proper energy storage device and its calculation, control strategy also suggested for protecting storage device from over voltage and deep discharge.

2021 ◽  
Vol 9 ◽  
Author(s):  
Erick Fernando Alves ◽  
Daniel dos Santos Mota ◽  
Elisabetta Tedeschi

The exponential rise of renewable energy sources and microgrids brings about the challenge of guaranteeing frequency stability in low-inertia grids through the use of energy storage systems. This paper reviews the frequency response of an ac power system, highlighting its different time scales and control actions. Moreover, it pinpoints main distinctions among high-inertia interconnected systems relying on synchronous machines and low-inertia systems with high penetration of converter-interfaced generation. Grounded on these concepts and with a set of assumptions, it derives algebraic equations to rate an energy storage system providing inertial and primary control. The equations are independent of the energy storage technology, robust to system nonlinearities, and rely on parameters that are typically defined by system operators, industry standards, or network codes. Using these results, the authors provide a step-by-step procedure to size the main components of a converter-interfaced hybrid energy storage system. Finally, a case study of a wind-powered oil and gas platform in the North Sea demonstrates with numerical examples how the proposed methodology 1) can be applied in a practical problem and 2) allows the system designer to take advantage of different technologies and set specific requirements for each storage device and converter according to the type of frequency control provided.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


2021 ◽  
Vol 13 (5) ◽  
pp. 2526
Author(s):  
Fahad Alismail ◽  
Mohamed A. Abdulgalil ◽  
Muhammad Khalid

Since renewable power is intermittent and uncertain, modern grid systems need to be more elegant to provide a reliable, affordable, and sustainable power supply. This paper introduces a robust optimal planning strategy to find the location and the size of an energy storage system (ESS) and feeders. It aims to accommodate the wind power energy integration to serve the future demand growth under uncertainties. The methodology was tested in the IEEE RTS-96 system and the simulation results demonstrate the effectiveness of the proposed optimal sizing strategy. The findings validate the improvements in the power system reliability and flexibility.


2019 ◽  
Vol 137 ◽  
pp. 01007 ◽  
Author(s):  
Sebastian Lepszy

Due to the random nature of the production, the use of renewable energy sources requires the use of technologies that allow adjustment of electricity production to demand. One of the ways that enable this task is the use of energy storage systems. The article focuses on the analysis of the cost-effectiveness of energy storage from the grid. In particular, the technology was evaluated using underground hydrogen storage generated in electrolysers. Economic analyzes use historical data from the Polish energy market. The obtained results illustrate, among other things, the proportions between the main technology modules selected optimally in technical and economic terms.


2021 ◽  
Vol 69 (2) ◽  
pp. 5-12
Author(s):  
Zheng Li ◽  
Yan Qin ◽  
Xin Cao ◽  
Shaodong Hou ◽  
Hexu Sun

In order to meet the load demand of power system, BP based on genetic algorithm is applied to the typical daily load forecasting in summer. The demand change of summer load is analysed. Simulation results show the accuracy of the algorithm. In terms of power supply, the reserves of fossil energy are drying up. According to the prediction of authoritative organizations, the world's coal can be mined for 216 years. As a renewable energy, wind power has no carbon emissions compared with traditional fossil energy. At present, it is generally believed that wind energy and solar energy are green power in the full sense, and they are inexhaustible clean power. The model of wind power solar hydrogen hybrid energy system is established. The control strategy of battery power compensation for delayed power of hydrogen production is adopted, and different operation modes are divided. The simulation results show that the system considering the control strategy can well meet the load demand. Battery energy storage system is difficult to respond to short-term peak power fluctuations. Super capacitor is used to suppress it. This paper studies the battery supercapacitor complementary energy storage system and its control strategy. When the line impedance of each generation unit in power grid is not equal, its output reactive power will be affected by the line impedance and distributed unevenly. A droop coefficient selection method of reactive power sharing is proposed. Energy storage device is needed to balance power and maintain DC voltage stability in the DC side of microgrid. Therefore, a new droop control strategy is proposed. By detecting the DC voltage, dynamically translating the droop characteristic curve, adjusting the output power, maintaining the DC voltage in a reasonable range, reducing the capacity of the DC side energy storage device. Photovoltaic grid connected inverter chooses the new droop control strategy.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


2018 ◽  
Vol 180 ◽  
pp. 02005 ◽  
Author(s):  
Włodzimierz Jefimowski ◽  
Anatolii Nikitenko

The paper presents the results of economic study of energy storage system (ESS) implemented in 3 kV DC power supply system. Two conceptions of ESS have been investigated: ESS with supercapacitor (SC) and hybrid ESS (HESS) with SC and LFP battery. The investigated locations of energy storage systems are considered among existing traction substations in two railway lines with different density of train operation. The considered aims of energy storage system implementation are decreasing of energy consumption by maximum regenerative energy utilization and reduction of peak 15- min power demand of traction substation. The paper presents a method of regenerative power estimation depending on the location of the considered ESS implementation point. Also the method of optimal location selection of ESS in terms of minimization of Simple Payback Time (SPBT) of investment is presented. Besides the influence of initial cost value as well as energy price on the SPBT value are investigated. The results are compared between two railway lines with different number of trains operating.


2021 ◽  
Vol 313 ◽  
pp. 06003
Author(s):  
Giovanni Ricco

At present time, the SE applied to solar dish reflectors is not competitive compared to other concentrated solar power technologies because Stirling CSP equipment has complex and expensive engines and does not have a proper energy storage system. This paper introduces Stirling solar dish technology, proposes a layout of a simple SE with compressed air storage system, and examines the total performance of the equipment.


Sign in / Sign up

Export Citation Format

Share Document