scholarly journals Research on Facilities of Power Supply of Small Power Capability Consumers of Bukhara Region by using Wind and Solar Energy

This article analyzes the climatic features of the Bukhara region – the southern-eastern part of Uzbekistan. The wind and solar potential of the region and the prospects of its utilization were evaluated. In recent years, wind and solar energy has been analyzed worldwide. The potential for the use of solar radiation in the region was analyzed. Accordingly, when the solar photovoltaic batteries in the region are used (coefficient of efficiency-18%), the technical potential of the region is 41 TWh/year. Wind speeds and wind energy potential data were collected over eight years (2011-2018) and were calculated using the monthly wind speed data measured every 30 minutes at a height of 10m. During the estimation of wind energy potential we were used two parameters Weibull and Rayleigh distribution functions. The density power and energy values of the wind flow at various heights were evaluated using the extrapolation method. In accordance with that, on height of 10m it makes 41.19 W/m2 and 361.48 kWh/m2, on height of 50m 117.23 W/m2 1026.96 kWh/m2, and on height of 100m 192.76 W/m2, 1688.59 kWh/m2. The wind energy gross, technical and economic potential of the region has been evaluated. In addition, the potential and prospects of using hybrid (wind and solar) power stations for the supply of uninterrupted and reliable power supply to consumers in the region were analyzed

2021 ◽  
pp. 0309524X2110438
Author(s):  
Carlos Méndez ◽  
Yusuf Bicer

The present study analyzes the wind energy potential of Qatar, by generating a wind atlas and a Wind Power Density map for the entire country based on ERA-5 data with over 41 years of measurements. Moreover, the wind speeds’ frequency and direction are analyzed using wind recurrence, Weibull, and wind rose plots. Furthermore, the best location to install a wind farm is selected. The results indicate that, at 100 m height, the mean wind speed fluctuates between 5.6054 and 6.5257 m/s. Similarly, the Wind Power Density results reflect values between 149.46 and 335.06 W/m2. Furthermore, a wind farm located in the selected location can generate about 59.7437, 90.4414, and 113.5075 GWh/y electricity by employing Gamesa G97/2000, GE Energy 2.75-120, and Senvion 3.4M140 wind turbines, respectively. Also, these wind farms can save approximately 22,110.80, 17,617.63, and 11,637.84 tons of CO2 emissions annually.


Author(s):  
O. O. Ajayi ◽  
R. O. Fagbenle ◽  
J. Katende

In this chapter, the authors present the result of a study carried out to develop a pre-assessment model that can be used to carry out a preliminary study on the availability of wind energy resources of a site. 21 years’ (1987 – 2007) monthly average wind speeds for 18 locations in Nigeria were used to create the simple constitutive model. The locations span across the six geopolitical zones of the nation with three stations from each zone. Various statistical procedures were employed in the development of the model. The outcome gave an empirical model, which if employed, will lead to determining the modest range of wind energy potential of a site. Further, the results from this model were compared with those from the well-established two-parameter Weibull statistical distribution function and found to be reasonably adequate. Thus with this model, decision on site selection for complete assessment can be made without much rigour.


Author(s):  
Laban N. Ongaki ◽  
Christopher M. Maghanga ◽  
Joash Kerongo

The research sought to investigate the long term characteristics of wind in the Kisii region (elevation 1710m above sea level, 0.68oS, 34.79o E). Wind speeds were analyzed and characterized on short term (per month for a year) and then simulated for long term (ten years) measured hourly series data of daily wind speeds at a height of 10m. The analysis included daily wind data which was grouped into discrete data and then calculated to represent; the mean wind speed, diurnal variations, daily variations as well as the monthly variations. The wind speed frequency distribution at the height 10 m was found to be 2.9ms-1 with a standard deviation of 1.5. Based on the two month’s data that was extracted from the AcuRite 01024 Wireless Weather Stations with 5-in-1 Weather Sensor experiments set at three sites in the region, averages of wind speeds at hub heights of 10m and 13m were calculated and found to be 1.7m/s, 2.0m/s for Ikobe station, 2.4m/s, 2.8m/s for Kisii University stations, and 1.3m/s, 1.6m/s for Nyamecheo station respectively. Then extrapolation was done to determine average wind speeds at heights (20m, 30m, 50m, and 70m) which were found to be 85.55W/m2, 181.75W/m2, 470.4W/m2 and 879.9W/m2 respectively. The wind speed data was used statistically to model a Weibull probability density function and used to determine the power density for Kisii region.


Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

Indonesia, which is a tropical country, has a very large potential for solar energy because of its area that stretches across the equator, with a radiation magnitude of 4.80 kWh / m2 / day or equivalent to 112,000 GWp. On the other hand, the earth receives solar power of 1.74 x 1017 W / hour and about 1-2% of it is converted into wind energy. However, from the total energy potential, Indonesia has only utilized around 10 MWp for solar energy and not much different, wind energy, whose utilization is planned to reach 250 MW in 2025, has only been utilized around 1 MW of the total existing potential. With this potential, to be able to supply additional power and help save energy for existing facilities in the building, a Prototype of Solar Panel Hybird and Vertical Axis Wind Turbine was created. The design of this prototype is a combination of savonious type turbines and solar panels, where the use of this type of turbine is because it can rotate at low wind speeds (low wind velocity) and its construction is very simple.


2015 ◽  
Vol 17 (2) ◽  
pp. 418-425

<p>Today&#39;s world requires a change in how the use of different types of energy. With declining reserves of fossil fuels for renewable energies is of course the best alternative. Among the renewable energy from the wind can be considered one of the best forms of energy can be introduced. Accordingly, most countries are trying to identify areas with potential to benefit from this resource.</p> <p>The aim of this study was to assess the potential wind power in Sahand station of Iran country. Hourly measured long term wind speed data of Sahand during the period of 2000-2013 have been statistically analyzed. In this study the wind speed frequency distribution of location was found by using Weibull distribution function. The wind energy potential of the location has been studied based on the Weibull mode. The results of this study show that mean wind speed measured at 10 m above ground level is determined as 5.16 m/s for the studied period. This speed increases by, respectively, 34.78 % and 41.21 %, when it is extrapolated to 40 and 60 m hub height.</p> <div> <p>Long term seasonal wind speeds were found to be relatively higher during the period from January to September. At the other hand, higher wind speeds were observed between the period between 06:00 and 18:00 in the day. These periods feet well with annual and daily periods of maximum demand of electricity, respectively.&nbsp;</p> </div> <p>&nbsp;</p>


2018 ◽  
Vol 192 ◽  
pp. 03058
Author(s):  
Chamlong Prabkeao ◽  
Akapot Tantrapiwat

A study on wind powered water pumping system aimed for agriculture was carried out in the middle part of Thailand. In this alluvial plain, wind energy potential was determined by making a survey on 21 observation sites. The survey was made in a period of one year, and it has shown that this region locates in a clam climate zone with average wind speeds at about 2 m/s. A wind turbine-water pumping system was installed and evaluated for its performance and efficiency. The result has shown a linear relationship between water discharge capability and the wind speeds. Due to the type of turbine and low wind speed in this region, the system efficiency turned out to be minimal, yet it was practical because the wind power was free. A simple cost analysis from the survey data also has shown that using a wind turbine in this region will be worthwhile when it can be operated for about two decades.


2015 ◽  
Vol 785 ◽  
pp. 621-626
Author(s):  
R. Shamsipour ◽  
M. Fadaeenejad ◽  
M.A.M. Radzi

In this study, wind energy potential in three different stations in Malaysia in period of 5 years is analyzed. Base on Weibull distribution parameters, the mean wind speed, wind power density and wind energy density is estimated for each defined location. Although there are many works about wind potential in Malaysia, however a few of them have been provided a comprehensive study about wind power in different places in Malaysia. According to the findings, the annual mean wind speeds indicates that the highest wind speed variation is about 2 m/s and is belonged to the Subang station and the highest wind speed is 3.5 m/s in in Kudat. It is also found that the maximum wind power densities among these three sites are 22 W/m2, 24 W/m2 and 22 W/m2 in Kudat station in January, February and September respectively. The results of the study show that as the second parameter for Weibull model, the highest wind energy density has been 190 kWh/m2 per year in Kudat and the lowest one has been about 60 kWh/m2 in Kuching.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Nkongho Ayuketang Arreyndip ◽  
Ebobenow Joseph

The method of generalized extreme value family of distributions (Weibull, Gumbel, and Frechet) is employed for the first time to assess the wind energy potential of Debuncha, South-West Cameroon, and to study the variation of energy over the seasons on this site. The 29-year (1983–2013) average daily wind speed data over Debuncha due to missing values in the years 1992 and 1994 is gotten from NASA satellite data through the RETScreen software tool provided by CANMET Canada. The data is partitioned into min-monthly, mean-monthly, and max-monthly data and fitted using maximum likelihood method to the two-parameter Weibull, Gumbel, and Frechet distributions for the purpose of determining the best fit to be used for assessing the wind energy potential on this site. The respective shape and scale parameters are estimated. By making use of the P values of the Kolmogorov-Smirnov statistic (K-S) and the standard error (s.e) analysis, the results show that the Frechet distribution best fits the min-monthly, mean-monthly, and max-monthly data compared to the Weibull and Gumbel distributions. Wind speed distributions and wind power densities of both the wet and dry seasons are compared. The results show that the wind power density of the wet season was higher than in the dry season. The wind speeds at this site seem quite low; maximum wind speeds are listed as between 3.1 and 4.2 m/s, which is below the cut-in wind speed of many modern turbines (6–10 m/s). However, we recommend the installation of low cut-in wind turbines like the Savonius or Aircon (10 KW) for stand-alone low energy need.


2021 ◽  
Vol 13 (8) ◽  
pp. 4524
Author(s):  
Khalid Almutairi ◽  
Ali Mostafaeipour ◽  
Ehsan Jahanshahi ◽  
Erfan Jooyandeh ◽  
Youcef Himri ◽  
...  

Observing the growing energy demand of modern societies, many countries have recognized energy security as a looming problem and renewable energies as a solution to this issue. Renewable hydrogen production is an excellent method for the storage and transfer of energy generated by intermittent renewable sources such as wind and solar so that they can be used at a place and time of our choosing. In this study, the suitability of 15 cities in Fars province, Iran, for renewable hydrogen production was investigated and compared by the use of multiple multi-criteria decision-making methods including ARAS, SAW, CODAS, and TOPSIS. The obtained rankings were aggregated by rank averaging, Borda method, and Copeland method. Finally, the partially ordered set ranking technique was used to reach a general consensus about the ranking. The criteria that affect hydrogen production were found to be solar energy potential, wind energy potential, population, air temperature, natural disasters, altitude, relative humidity, land cost, skilled labor, infrastructure, topographic condition, and distance from main roads. These criteria were weighted using the best–worst method (BWM) based on the data collected by a questionnaire. Solar energy potential was estimated using the Angstrom model. Wind energy potential was estimated by using the Weibull distribution function for each month independently. The results of the multi-criteria decision-making methods showed Izadkhast to be the most suitable location for renewable hydrogen production in the studied area.


2019 ◽  
Vol 9 (1) ◽  
pp. 3721-3725 ◽  
Author(s):  
B. Memon ◽  
M. H. Baloch ◽  
A. H. Memon ◽  
S. H. Qazi ◽  
R. Haider ◽  
...  

When compared with other renewable energy resources (RER), the wind energy share in the global energy production is increasing rapidly. Currently, the Government of Pakistan (GoP) is moving towards RER, specifically wind and solar energy. In this paper, the wind energy potential of Tando Ghulam Ali, Sindh, Pakistan is explored. For this purpose, one-year wind speed data is considered at various heights through various probability distribution functions (PDFs). Statistical comparison of Rayleigh, gamma, generalized extreme value (GEV) and lognormal PDFs have been done with two methods, namely root mean square error and (R^2) in order to select the best PDF. Results showed that the Rayleigh distribution function is the best at the above mentioned area for finding various factors like site selection and wind power cost per kWh.


Sign in / Sign up

Export Citation Format

Share Document