scholarly journals Analysis of Performance Parameters of AODV in Presence of Malicious Nodes in MANET by Varying Nodes Density

Nodes are important aspect of Mobile network. Mobile ad-hoc network means any network that is made at the time of need. Ad-hoc network has its own place in networking. Mobility in network makes it more demandable. Nodes are the device that takes part in network or makes network. Nodes behavior describes network configuration. Genuine node insures you proper working of network with best results as throughput or packet ratio. Presence of malicious nodes differs in comparison to genuine node. Malicious node degrades output of network. Performance metrics noted degradation in their quality when malicious node encounters in network. Malicious nodes in different sets of node density affect the network in different way

2017 ◽  
Vol 7 (1.2) ◽  
pp. 110
Author(s):  
Uzma Shaikh ◽  
Arokia Paul Rajan

Mobile Ad-hoc Network (MANET) is a mobile network which has a large scale of self-directed nodes which is powerful to form a short-term means of communication network, without any use of prior communications. Due to its uniqueness like partial resources, varying loops and shortfall of controlling the networks, these networks are exposed to diverse network layer issues. The “Ad hoc on demand distance vector” is a self-starting directing procedure whose security is compromised with the distinct form of attack named as “Black-Hole” and “Grey Hole” attacks. This “malicious node” publicize as such, it contains the supreme track to the target during the route discovery process and thus interrupt the real communication and corrupt network performance. This paper introduces a new method in which a base node is introduced in the network that increases the probability of detecting multiple malicious nodes in the network and further separate them from taking part in any communication. It detects the corrupted nodes and prevent it by causing an effect for the communication. The proposed method has been experimented using NS2 and the results found to be efficient.


Author(s):  
A. S. M. Muntaheen ◽  
Milton Chandro Bhowmick ◽  
Md. Raqibul Hasan Rumman ◽  
Nayeem Al-Tamzid Bhuiyan ◽  
Md. Taslim Mahmud Bhuyain ◽  
...  

A self-organized wireless communication short-lived network containing collection of mobile nodes is mobile ad hoc network (MANET). The mobile nodes communicate with each other by wireless radio links without the use of any pre-established fixed communication network infrastructure or centralized administration, such as base stations or access points, and with no human intervention. In addition, this network has potential applications in conference, disaster relief, and battlefield scenario, and have received important attention in current years. There is some security concern that increases fear of attacks on the mobile ad-hoc network. The mobility of the NODE in a MANET poses many security problems and vulnerable to different types of security attacks than conventional wired and wireless networks. The causes of these issues are due to their open medium, dynamic network topology, absence of central administration, distributed cooperation, constrained capability, and lack of clear line of defense. Without proper security, mobile hosts are easily captured, compromised, and attacked by malicious nodes. Malicious nodes behavior may deliberately disrupt the network so that the whole network will be suffering from packet losses. One of the major concerns in mobile ad-hoc networks is a traffic DoS attack in which the traffic is choked by the malicious node which denied network services for the user. Mobile ad-hoc networks must have a safe path for transmission and correspondence which is a serious testing and indispensable issue. So as to provide secure communication and transmission, the scientist worked explicitly on the security issues in versatile impromptu organizations and many secure directing conventions and security measures within the networks were proposed. The goal of the work is to study DoS attacks and how it can be detected in the network. Existing methodologies for finding a malicious node that causes traffic jamming is based on node’s retains value. The proposed approach finds a malicious node using reliability value determined by the broadcast reliability packet (RL Packet). In this approach at the initial level, every node has zero reliability value, specific time slice, and transmission starts with a packet termed as reliability packet, node who responded properly in specific time, increases its reliability value and those nodes who do not respond in a specific time decreases their reliability value and if it goes to less than zero then announced that it’s a malicious node. Reliability approach makes service availability and retransmission time.


Author(s):  
A. Aranganathan ◽  
C.D. Suriyakala

Mobile Ad-hoc Network is a non-secure wireless network which has no infrastructure, dynamical topology in which the nodes can move anywhere, may join or leave the network through multi-hop communication. In cluster network, all the nodes can select one Cluster Head for transmission of data to another Cluster Head through gateways which is mainly used for saving energy of each node. Intelligent agents are used for collecting secure data from neighboring nodes and inform to the trusted agent in clustered networks. Security plays major role in wireless medium. Detecting malicious node is also causing a major concern to damage the data packets. To avoid this problem of entering malicious node in networks and non-secured data, agents based trusted revocation in clustering mobile ad-hoc network for improving security with Certificate Authority to improve the network performance like high throughput, less latency time and improved certificate revocation time using ns2 simulators.


Author(s):  
A. Aranganathan ◽  
C. D. Suriyakala

Mobile Ad-hoc Network is a non-secure wireless network which has no infrastructure, dynamical topology in which the nodes can move anywhere, may join or leave the network through multi-hop communication. In cluster network, all the nodes can select one Cluster Head for transmission of data to another Cluster Head through gateways which is mainly used for saving energy of each node. Intelligent agents are used for collecting secure data from neighboring nodes and inform to the trusted agent in clustered networks. Security plays major role in wireless medium. Detecting malicious node is also causing a major concern to damage the data packets. To avoid this problem of entering malicious node in networks and non-secured data, agents based trusted revocation in clustering mobile ad-hoc network for improving security with Certificate Authority to improve the network performance like high throughput, less latency time and improved certificate revocation time using ns2 simulators.


Author(s):  
Twahirwa Evariste ◽  
Willie Kasakula ◽  
James Rwigema ◽  
Raja Datta

Vehicular Ad Hoc Network (VANET) is a subclass of Mobile Ad Hoc Network that mainly consists of moving and/or stationary vehicles, connected through wireless protocols such as IEEE 802.11p and wireless access in vehicular environments (WAVE). With the evolution of the Internet of Things (IoT), ordinary VANET has turned to the Internet of Vehicles (IoV), with additional social aspects, a novel extension themed SIoV has become common in urban areas. However vehicular wireless communication paradigms exhibit short radio communication. This problem has always been approached by supplementing moving vehicles with stationary Road Side Infrastructures, commonly known as roadside units (RSUs). The penetration of such RSUs on the global market is very low; furthermore, their procurement, deployment, and maintenance costs are prohibitively very high. All mentioned challenges have discouraged the widespread deployment of roadside infrastructure especially within large urban scenarios. With this research, we leverage on-street parked vehicles to allow them to exist as temporal gateways in the case study area. A novel modeling technique is introduced to enable a specific Percentage of parked vehicles to take up the role of roadside gateways for a certain percentage of their parking time. A mobile application is implemented that manages parking duration of the vehicle, based on the arrival, and departure time frames. Two more existing strategies were discussed (road-intersection RSUs deployment approach and Inter-vehicle scheme) to validate our proposed method through comparative studies. To evaluate the network performance evaluation, we compare two performance metrics, that is, Packets success delivery rate, and overall packets throughput under numerous vehicle densities. Using parked vehicles as temporal roadside gateways has demonstrated better results in comparison to intersection based RSUs deployment approach, and free vehicle to vehicle communication approach.


2021 ◽  
pp. 143-149
Author(s):  
Le Quang Minh ◽  

Network security is an important problem, which attracts more attention because recent network attacks caused huge consequences such as data lose, reduce network performance and increase routing load. In this article, we show network attack forms in MANET and propose Multiple Signature Authenticate (MSA) mechanism using digital signature based on asymmetric encryption RSA. Moreover, we describe a new security routing protocol named AODV-MSA by integrating MSA into AODV. Using NS2 simulator system, we implement and examine the efficiency of the AODV-MSA protocol with the 32-bit keys.


Author(s):  
Akinboro Solomon ◽  
Emmanuel Olajubu ◽  
Ibrahim Ogundoyin ◽  
Ganiyu Aderounmu

This study designed, simulated and evaluated the performance of a conceptual framework for ambient ad hoc home network. This was with a view to detecting malicious nodes and securing the home devices against attacks. The proposed framework, called mobile ambient social trust consists of mobile devices and mobile ad hoc network as communication channel. The trust model for the device attacks is Adaptive Neuro Fuzzy (ANF) that considered global reputation of the direct and indirect communication of home devices and remote devices. The model was simulated using Matlab 7.0. In the simulation, NSL-KDD dataset was used as input packets, the artificial neural network for packet classification and ANF system for the global trust computation. The proposed model was benchmarked with an existing Eigen Trust (ET) model using detection accuracy and convergence time as performance metrics. The simulation results using the above parameters revealed a better performance of the ANF over ET model. The framework will secure the home network against unforeseen network disruption and node misbehavior.


2021 ◽  
Vol 17 (1) ◽  
pp. 60-70
Author(s):  
Vinoth Kumar V. ◽  
Ramamoorthy S. ◽  
Dhilip Kumar V. ◽  
Prabu M. ◽  
Balajee J. M.

In recent years, WiFi offloading provides a potential solution for improving ad hoc network performance along with cellular network. This paper reviews the different offloading techniques that are implemented in various applications. In disaster management applications, the cellular network is not optimal for existing case studies because the lack of infrastructure. MANET Wi-Fi offloading (MWO) is one of the potential solutions for offloading cellular traffic. This word combines the cellular network with mobile ad hoc network by implementing the technique of Wi-Fi offloading. Based on the applications requirements the offloading techniques implemented into mobile-to-mobile (M-M), mobile-to-cellular (M-C), mobile-to-AP (M-AP). It serves more reliability, congestion eliminated, increasing data rate, and high network performance. The authors also identified the issue while implementing the offloading techniques in network. Finally, this paper achieved the better performance results compared to existing approaches implemented in disaster management.


2016 ◽  
Vol 10 (2) ◽  
pp. 26-40 ◽  
Author(s):  
Kajal S. Patel ◽  
Jagdish S. Shah

Wireless networks are vulnerable to many security attacks as they use wireless media and a node has to depend on unknown intermediate nodes for data transmission. Cryptographic algorithms used for wired network cannot work efficiently in wireless network, as in wireless network nodes are mobile and battery operated. Nodes may also have limited resources available. So, to detect malicious activities on node and improve stability of route while routing in mobile ad hoc network, trust-based routing is used. Communication parameters used in calculating trust value in most of existing trust based protocol (wireless network) are number of successful session or packet forwarded between two nodes, number of packet dropped or delayed, response time, battery life, mobility of node etc. This paper provides analysis of existing trust based routing by surveying current “sate of the art” work in this area. This paper also proposed a new parameter (number of route error message sent by a node) of a wireless node which can affect the network performance and can be used to calculate trust value.


Sign in / Sign up

Export Citation Format

Share Document