scholarly journals A Framework for Data Security using Cryptography and Image Steganography

Cryptography and steganography are the two research areas which are popular for data confidentiality, data hiding respectively. Steganography hides the data in various multimedia cover files like image, audio and video. This paper handles images for steganography, which have high redundant pixels. In this paper, Lease Significant Bit (LSB) method hides the secret message bits in least significant bits of each pixel. The performance metrics MSE and PSNR are used to check the strength of the proposed algorithm. The proposed algorithm also checks payload capacity, image quality and security of the confidential data by applying cryptography and steganography algorithm and various parameters

2013 ◽  
Vol 2 (2) ◽  
pp. 134 ◽  
Author(s):  
Agilandeeswari Loganathan ◽  
Brindha Krishnamoorthy ◽  
Stiffy Sunny ◽  
Muralibabu Kumaravel

Communication in digital form has become the part of day todays lifestyle, in certain moment communication is made secret to avoid others from knowing the information. By providing security to the sensitive data it is ensured that the users data is protected from viewing and accessing by others. In the current discussion about data security, Steganographic algorithm using two mediums has been discussed that involves image based encryption and converting to word file. The stage involving image based encryption uses HMAC-MD5 algorithm along with LSB steganography. LSB technique scatters the secret data which have to be protected over the entire image. Convert the embedded image in word file, so that the secret message is made unavailable to others who try to obtain the file. This method provides greater payload capacity along with higher image fidelity and thus make the proposed system is more robust against attacks.


2020 ◽  
Vol 39 (3) ◽  
pp. 2977-2990
Author(s):  
R. Anushiadevi ◽  
Padmapriya Praveenkumar ◽  
John Bosco Balaguru Rayappan ◽  
Rengarajan Amirtharajan

Digital image steganography algorithms usually suffer from a lossy restoration of the cover content after extraction of a secret message. When a cover object and confidential information are both utilised, the reversible property of the cover is inevitable. With this objective, several reversible data hiding (RDH) algorithms are available in the literature. Conversely, because both are diametrically related parameters, existing RDH algorithms focus on either a good embedding capacity (EC) or better stego-image quality. In this paper, a pixel expansion reversible data hiding (PE-RDH) method with a high EC and good stego-image quality are proposed. The proposed PE-RDH method was based on three typical RDH schemes, namely difference expansion, histogram shifting, and pixel value ordering. The PE-RDH method has an average EC of 0.75 bpp, with an average peak signal-to-noise ratio (PSNR) of 30.89 dB. It offers 100% recovery of the original image and confidential hidden messages. To protect secret as well as cover the proposed PE-RDH is also implemented on the encrypted image by using homomorphic encryption. The strength of the proposed method on the encrypted image was verified based on a comparison with several existing methods, and the approach achieved better results than these methods in terms of its EC, location map size and imperceptibility of directly decrypted images.


Author(s):  
Seunghyun Im ◽  
Zbigniew W. Ras

This article discusses data security in Knowledge Discovery Systems (KDS). In particular, we presents the problem of confidential data reconstruction by Chase (Dardzinska and Ras, 2003c) in KDS, and discuss protection methods. In conventional database systems, data confidentiality is achieved by hiding sensitive data from unauthorized users (e.g. Data encryption or Access Control). However, hiding is not sufficient in KDS due to Chase. Chase is a generalized null value imputation algorithm that is designed to predict null or missing values, and has many application areas. For example, we can use Chase in a medical decision support system to handle difficult medical situations (e.g. dangerous invasive medical test for the patients who cannot take it). The results derived from the decision support system can help doctors diagnose and treat patients. The data approximated by Chase is particularly reliable because they reflect the actual characteristics of the data set in the information system. Chase, however, can create data security problems if an information system contains confidential data (Im and Ras, 2005) (Im, 2006). Suppose that an attribute in an information system S contains medical information about patients; some portions of the data are not confidential while others have to be confidential. In this case, part or all of the confidential data in the attribute can be revealed by Chase using knowledge extracted at S. In other words, self-generated rules extracted from non-confidential portions of data can be used to find secret data. Knowledge is often extracted from remote sites in a Distributed Knowledge Discovery System (DKDS) (Ras, 1994). The key concept of DKDS is to generate global knowledge through knowledge sharing. Each site in DKDS develops knowledge independently, and they are used jointly to produce global knowledge without complex data integrations. Assume that two sites S1 and S2 in a DKDS accept the same ontology of their attributes, and they share their knowledge in order to obtain global knowledge, and an attribute of a site S1 in a DKDS is confidential. The confidential data in S1 can be hidden by replacing them with null values. However, users at S1 may treat them as missing data and reconstruct them with Chase using the knowledge extracted from S2. A distributed medical information system is an example that an attribute is confidential for one information system while the same attribute may not be considered as secret information in another site. These examples show that hiding confidential data from an information system does not guarantee data confidentiality due to Chase, and methods that would protect against these problems are essential to build a security-aware KDS.


2017 ◽  
Vol 16 (1) ◽  
pp. 19-34
Author(s):  
F T. IBHARALU ◽  
M. O. FALOWO ◽  
A. T. AKINWALE

Data transmission through the internet applications is growing very fast, and this continuous growth demands for new network bandwidth and data security. Encryption plays a major role in security of information systems and internet based applications. In this study, the RSA algorithm was modified with bit-stuffing technique to improve the protection and security of confidential data while in transits or in storage. Our modified algorithm, RSA Bit-stuffed, was implemented and compared with the modified Ron Divest Code4 and the modified RSA in MATLAB using time complexity and avalanche effect as performance metrics. The experimental results showed that our augmented bit-insertion technique increased the time complexity against different attacks, boost the randomness of encrypted messages, and also improve security of encryption keys with bit-length lower than that of the standard RSA.  


2020 ◽  
Vol 10 (18) ◽  
pp. 6410
Author(s):  
Jinwoo Kang ◽  
Hyunjung Kim ◽  
Sang-ug Kang

Video has become the most important medium for communication among people. Video has become the most important medium for communication among people. Therefore, reversible data hiding technologies for video have been developed so that information can be hidden in the video without damaging the original video in order to be used in the copyright protection and distribution field of video. This paper proposes a practical and genuine reversible data hiding method by using a multi-dimensional histogram shifting scheme on QDCT coefficients in the H.264/AVC bitstream. The proposed method defines the vacant histogram bins as a set of n-dimensional vectors and finds the optimal vector space, which gives the best performance, in a 4 × 4 QDCT block. In addition, the secret message is mapped to the optimal vector space, which is equivalent to embedding the information into the QDCT block. The simulation results show that the data hiding efficiency is the highest among the compared five existing methods. In addition, the image distortion and maximum payload capacity are measured quite high.


2021 ◽  
Vol 11 (21) ◽  
pp. 10157
Author(s):  
Chin-Feng Lee ◽  
Hua-Zhe Wu

In previous research, scholars always think about how to improve the information hiding algorithm and strive to have the largest embedding capacity and better image quality, restoring the original image. This research mainly proposes a new robust and reversible information hiding method, recurrent robust reversible data hiding (triple-RDH), with a recurrent round-trip embedding strategy. We embed the secret message in a quotient image to increase the image robustness. The pixel value is split into two parts, HiSB and LoSB. A recurrent round-trip embedding strategy (referred to as double R-TES) is designed to adjust the predictor and the recursive parameter values, so the pixel value carrying the secret data bits can be first shifted to the right and then shifted to the left, resulting in pixel invariance, so the embedding capacity can be effectively increased repeatedly. Experimental results show that the proposed triple-RDH method can effectively increase the embedding capacity up to 310,732 bits and maintain a certain level of image quality. Compared with the existing pixel error expansion (PEE) methods, the triple-RDH method not only has a high capacity but also has robustness for image processing against unintentional attacks. It can also be used for capacity and image quality according to the needs of the application, performing adjustable embedding.


2019 ◽  
Vol 8 (4) ◽  
pp. 6551-6556

In recent years, with the huge expansion of internet and communication technology, the data transmission rate has increased exponentially. The threat of unauthorized penetration to the secret messages during transmission has become a major concern for data integrity. Cryptography and Steganography are two well-known techniques used to secure and hide confidential data from the intruders. Cryptography is used to obscure the secret message whereas Steganography embeds the messages into a cover media and conceals the presence of secret information. In DNA steganography, DNA molecular sequence is used as a cover medium. In the field of steganography, Payload capacity is the measurement of hiding intended messages in cover media. The Capacity of hiding messages in cover media is one of the prime challenges in the field of steganography. The principal study of this research is to provide a new framework using DNA steganography that provides a higher payload capacity. We have used balanced tree data structures for message encoding where the leaf node contains the intended message. This unique process of message encoding and decoding guarantees a payload capacity of ≥ 0.50.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 86
Author(s):  
Jijun Wang ◽  
Soo Fun Tan

Separable Reversible Data Hiding in Encryption Image (RDH-EI) has become widely used in clinical and military applications, social cloud and security surveillance in recent years, contributing significantly to preserving the privacy of digital images. Aiming to address the shortcomings of recent works that directed to achieve high embedding rate by compensating image quality, security, reversible and separable properties, we propose a two-tuples coding method by considering the intrinsic adjacent pixels characteristics of the carrier image, which have a high redundancy between high-order bits. Subsequently, we construct RDH-EI scheme by using high-order bits compression, low-order bits combination, vacancy filling, data embedding and pixel diffusion. Unlike the conventional RDH-EI practices, which have suffered from the deterioration of the original image while embedding additional data, the content owner in our scheme generates the embeddable space in advance, thus lessening the risk of image destruction on the data hider side. The experimental results indicate the effectiveness of our scheme. A ratio of 28.91% effectively compressed the carrier images, and the embedding rate increased to 1.753 bpp with a higher image quality, measured in the PSNR of 45.76 dB.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


Sign in / Sign up

Export Citation Format

Share Document