scholarly journals Electrical Discharge Machining: Vital to Manufacturing Industries

This paper presents an insight of state of art of electrical discharge machining process. In this process, material gets eroded from the workpiece because of chain of speedily repeating current discharges amidst twin electrodes, which are parted by dielectric fluid and made prone to a potential difference. This process offers various advantages over conventional process and finds wide applications in various industries. The information provided in this study will be very useful for the beginners to understand the basic fundamentals of unconventional EDM process

Author(s):  
Sampath Boopathi

Abstract Electrical discharge machining (EDM) is very essential unconventional electro-thermal machining process to machine the contour profile of hard materials in modern production industries. The liquid dielectric fluid has been replaced by the gas and minimum quantity of liquid mixed with gas (gas-mist) to encourage the green machining processes. The various gases and gas-mist have been used as the working fluid in dry and near-dry EDM respectively. The research-contextual, various dielectric fluids, sustainable and innovative developments, process parameters, machining characteristics, and optimization techniques applied in various dry and near-dry EDM have been illustrated through an extensive literature survey. Future research opportunities in both dry and near-dry EDM have been summarized to promote eco-friendly EDM research activities.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

Electrical discharge machining (EDM) is widely used to manufacture complex shaped dies, molds and critical parts in conductive materials. With the help of an assisting electrode (AE), EDM process can be used to machine nonconductive ceramics. This paper evaluates the mechanical properties of three high-performance nonconductive ceramics (ZrO2, Si3N4, and SiC) that have been machined with the EDM process using AE. Mechanical properties such as Vickers hardness (HV 0.3), surface roughness (Sq), and flexural strength of the machined and the nonmachined samples are compared. The EDM process causes decrease in Vickers hardness, increase in surface roughness, and decrease in flexural strength.


2020 ◽  
Vol 996 ◽  
pp. 131-136
Author(s):  
Yao Li ◽  
Cheng Cui ◽  
Bengang Lin ◽  
Li Li

Inconel718 has been widely used in various fields for its good performance, but it is difficult to machine with traditional machining methods. Electrical discharge machining is an alternative competitive process to machine Nickel-based alloys by electrical erosion. In order to improve reduce the electrode loss and improve the machining efficiency, the horizontal ultrasonic vibration of the workpiece and the cryogenic cooling of the tool electrode were applied into the EDM process. Material removal efficiency, surface roughness, surface topography, and microhardness have been characterized.


2014 ◽  
Vol 611-612 ◽  
pp. 650-655 ◽  
Author(s):  
Laurenţiu Slătineanu ◽  
Margareta Coteaţă ◽  
Hans Peter Schulze ◽  
Oana Dodun ◽  
Irina Besliu ◽  
...  

Electrical discharge machining uses the pulse electrical discharges generated between the closest asperities existing on the workpiece surface and the active surface of the tool electrode in dielectric fluid. Essentially, some distinct electrical discharge machining schemas could be used in order to obtain cylindrical external surfaces; within this research, one preferred a machining schema based on the use of a cooper plate in which there were small diameter holes, by taking into consideration the existence of a ram electrical discharge machine. The results of the machining process analysis were presented. A thin copper was considered to be used as tool electrode, in order to diminish the spurious electrical discharges, able to generate shape errors of the machined surface. Some experimental researches were developed by changing the sizes of the process input parameters. As output factors, the test piece and tool electrode masses decreases were considered. Power type empirical mathematical models were determined, in order to highlight the influence exerted by the pulse on time, off time and machining process duration on the output parameters values.


2020 ◽  
Vol 66 (4) ◽  
pp. 243-253 ◽  
Author(s):  
Sanjay Sundriyal ◽  
Vipin ◽  
Ravinderjit Singh Walia

Near-dry electrical discharge machining (ND-EDM) is an eco-friendly process. In this study, an approach has been made to make the machining process more efficient than ND-EDM with the addition of metallic powder with the dielectric medium to machine EN-31 die steel. Powdermixed near-dry EDM (PMND-EDM) has several advantages over the ND-EDM or conventional electrical discharge machining (EDM) process, such as a higher material removal rate (MRR), fine surface finish (Ra), sharp cutting edge, lesser recast layer, and lower deposition of debris. The output response variables are MRR, Ra, residual stress (RS) and micro-hardness (MH) of the machined surfaces. Further study of the workpiece was performed, and a comparative study was conducted between ND-EDM and PMND-EDM. In this proposed method of machining, the MRR, Ra, and MH increased by 17.85 %, 16.36 %, and 62.69 % while RS was reduced by 56.09 %.


2014 ◽  
Vol 592-594 ◽  
pp. 456-460
Author(s):  
S. Ramesh ◽  
N. Natarajan ◽  
Vijayan Krishnaraj ◽  
K. Sathish Kumar

Wire Electrical Discharge Machining (WEDM) is an very accurate non-traditional machining process for producing parts with accurate dimensions and complex shapes. The performance of WEDM is measured by evaluating the parameters like Material Removal Rate (MRR), Surface Roughness (Ra), cracks, voids, pores and recast layer. In this paper, an attempt is made to improve the machining performance by adding multi wall carbon nanotube (MWCNT) with dielectric fluid. The MRR, Ra and surface characteristics are compared with surface that is machined using dielectric fluid with and without MWCNT. The results show that addition of MWCNT improves the MRR and surface finish.


2008 ◽  
Vol 389-390 ◽  
pp. 430-435 ◽  
Author(s):  
Yao Yang Tsai ◽  
Chih Kang Chang

Electrical discharge machining (EDM) is an excellent technology to machining die and mold, but it is uneasy to obtain mirror-like surface. Powder-Mixed dielectric electrical discharge machining (PMD-EDM) is the innovative technology of EDM process, which can improve the quality of machined surface and applied in EDM finish machining now. The powder is usually hard particles, such as Al, Cu, Cr and Si in PMD-EDM. This paper presents a new research of PMD-EDM with suspending soft particles and abrasive grits in the dielectric fluid, especially focus on surface roughness. Experimental result shows the EDM process with polymer particles and abrasive grits can be carried out in silicone oil and the surface roughness has the finer improvement when increasing the rotation speed. Also, the effect of hard particles suspending in dielectric fluid are also discussed and compared. The surface roughness using polymer particles and abrasive in specific condition was better than only hard particles in silicone oil. Moreover, mixing abrasive and polymer in EDM can perform the polishing process.


2021 ◽  
Vol 8 (5) ◽  
pp. 91-95
Author(s):  
Nayan J. Patel

Electrical Discharge Machining is one of the non-conventional machining processes used for electrically conductive material. It is widely used for manufacturing complicated parts which are tough to be produced by conventional manufacturing processes. It is based on thermoelectric energy between workpiece and electrode. Metal is removed by melting and vaporizing because of spark occurs in the gap between electrode and workpiece. Workpiece and electrode must have electrically conductive to generate a spark. The performance of the EDM process is largely depends on the electrode. Electrode is considered as tool in EDM process. Selection of the electrode material plays vital role in the EDM process. Different electrode materials have different properties. Hence, the performance of the EDM process changes with different materials. Researchers have used different materials as electrode to investigate the effects of materials and to improve the performance of EDM process. This paper reviews the research work carried out in the field of materials and manufacturing methods for electrodes in EDM process. Keywords: [EDM, Electrodes, Materials, Manufacturing Process].


Sign in / Sign up

Export Citation Format

Share Document