scholarly journals Micro Grid Operational Issues And Challenges In Smart Grid Scenario While Heterogeneous Micro Level Generations Are Predominant

Micro Grid operations are more dependent on and vulnerable to intermittent renewable energy sources (RES) integration along with other emerging trends like Plug in Electric Vehicles (PEVs) and advanced Energy Storage Systems (ESSs). With the advent of Smart Grid technologies, the micro grid operations are becoming more realistic and promising without much delays and inaccuracies in control actions. In this paper, we mainly focused on Micro Grid Energy Management System (EMS), synchronization, V and f control. A comprehensive review has been carried out to list out the current issues and challenges in a Smart Grid technology aided Micro Grid. The major issues in Micro Grid are mainly concerned with integration of intermittent distribution generation and while running in island mode of operation, the issues like V and f correction are more critical. Micro grid community helps in power sharing and stability cooperation among all micro grids, but at the same it should be capable of identifying when to isolate in case of any micro grid blackout. The role of power electronic converters in controlling the grid parameters while interfacing DGs are discussed through available literature

2021 ◽  
Vol 23 (6) ◽  
pp. 455-466
Author(s):  
Margot G.L. ◽  
Corinne A. ◽  
Bruno A.

This paper presents a study about power profiles of micro-grid with highly intermittent sources and their impacts on energy storage system (ESS). The first step of the work consists in generating the ESS power profiles thanks to a new optimal sizing algorithm. Our approach allows to size the ESS and the renewable energy sources (RES) using a power/energy considerations to generate charging and discharging profiles regardless ESS specifics parameters. In a second step, we review the potential damages on Valves Regulated Lead Acid Batteries (VRLAB). This technology has been chosen because it is the most used ESS in case of stationary applications for urban MG with RES integration. We propose some criterion to quantify the batteries stresses generated by MG working operations. Therefore, we give recommendations to enhance the VRLAB lifetime in both micro-grid design and energy management. Our method has been applied to the photovoltaic production and lighting network consumption profiles of the LAAS-CNRS building integrated photovoltaic. We compare four possible configurations of ESS and RES: two determined thanks to Pareto optimisation method and two critical cases corresponding to the minimal and the maximal values of ESS size into all the possible configuration tested.


2020 ◽  
Vol 29 (16) ◽  
pp. 2030014
Author(s):  
Sumeet Kumar Wankhede ◽  
Priyanka Paliwal ◽  
Mukesh K. Kirar

The world is witnessing a transformation from the conventional electrical grid into the smart grid. The smart grid can provide an effective solution to alarming problems associated with a conventional grid with increased reliability, efficiency, and sustainability. Integration of distributed energy resources (DERs) comprising of renewable energy sources (RESs) is a vital component of the smart grid. DERs not only can provide a viable solution for environmental concerns arising due to conventional fossil fuel-based plants, but can also contribute towards the system reliability. However, the integration of DERs is associated with several challenges.  Thus, the successful deployment of DERs in smart grid framework calls for a comprehensive analysis. This paper presents an exhaustive review of various challenges associated with increased penetration of DERs. An organized classification of various technical challenges along with their mitigation measures has been critically reviewed. Smart inverters equipped with advanced control structure are emerging as a potential solution to address these challenges effectively. Hence, a review of smart inverter along with its functional capabilities has also been discussed in this paper.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4288 ◽  
Author(s):  
Md Mamun Ur Rashid ◽  
Fabrizio Granelli ◽  
Md. Alamgir Hossain ◽  
Md. Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
...  

The steady increase in energy demand for residential consumers requires an efficient energy management scheme. Utility organizations encourage household applicants to engage in residential energy management (REM) system. The utility’s primary goal is to reduce system peak load demand while consumer intends to reduce electricity bills. The benefits of REM can be enhanced with renewable energy sources (RESs), backup battery storage system (BBSS), and optimal power-sharing strategies. This paper aims to reduce energy usages and monetary cost for smart grid communities with an efficient home energy management scheme (HEMS). Normally, the residential consumer deals with numerous smart home appliances that have various operating time priorities depending on consumer preferences. In this paper, a cost-efficient power-sharing technique is developed which works based on priorities of appliances’ operating time. The home appliances are sorted on priority basis and the BBSS are charged and discharged based on the energy availability within the smart grid communities and real time energy pricing. The benefits of optimal power-sharing techniques with the RESs and BBSS are analyzed by taking three different scenarios which are simulated by C++ software package. Extensive case studies are carried out to validate the effectiveness of the proposed energy management scheme. It is demonstrated that the proposed method can save energy and reduce electricity cost up to 35% and 45% compared to the existing methods.


Author(s):  
Abdul Rasheed ◽  
G. Keshava Rao

<p>Generally, the power systems are mainly effected by the continuous changes in operational requirement and increasing amount of distributed energy systems. This paper proposes a new concept of power-control strategies for a micro grid generation system for better transfer of power. The micro grids are obtained with the general renewable energy sources and this concept provides the maximum utilization of power at environmental free conditions with low losses; then the system efficiency is also improved. This paper proposes a single stage converter based micro grid to reduce the number of converters in an individual ac or dc grid. The proposed micro grid concept can work in both stand-alone mode and also in grid interfaced mode. The distortions that occur in power system due to changes in load or because of usage of non-linear loads, can be eliminated by using control strategies designed for shunt active hybrid filters such as series and shunt converters. A conventional Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality enhancement by reducing the distortions in the output power. The simulation results are compared among the two control strategies, that fuzzy logic controller and pi controller.</p>


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2762 ◽  
Author(s):  
Lilia Tightiz ◽  
Hyosik Yang

Since the smart grid deals with a large mass of data and critical missions, it requires ubiquitous, reliable, and real-time communication. The Internet of Things (IoT) technology, which has the potential of connecting all objects over the globe through the Internet, excels in providing robust information transmission infrastructure in the smart grid. There are a multitude of possible protocols, standards, and configurations for communication in the smart grid. A commonly applied communication standard IEC 61850 recommends the use of Manufacturing Message Specification (MMS) protocol for communication in Local Area Network (LAN) and eXtensible Messaging and Presence Protocol (XMPP) in Wide Area Network (WAN). However, a plethora of research on this topic compares the behavior of other IoT protocols and standard recommendations in the smart grid. On the other hand, the sky-rocketing penetration of Renewable Energy Sources (RES), especially in the form of micro grid, transformed the central control structure of the smart grid into a distributed style called Multi-Agent Systems (MAS). This new approach defined new communication requirements and more particular IoT protocol characteristic requirements. However, a limited number of the existing studies have considered IoT protocol characteristic requirements of the smart grid and its new control structures. In this paper, we initially investigate the communication requirements of the smart grid and introduce all IoT protocols and their specifications. We analyze IoT protocol characteristics and performances in the smart grid through literature review based on the smart grid communication requirements. In this approach, we highlight weak points of these practices making them fail to acquire the holistic guidelines in utilizing proper IoT protocol that can meet the smart grid environment interaction requirements. Using the existing facilities, the public Internet, we follow the arrangement of cost-effective high penetration communication requirements for new structures of the smart grid, i.e., the MAS and multi-micro grid. In this case, we consider IoT protocol Quality of Services (QoS) requirements, especially in the case of security and reliability, to satisfy stakeholders, namely utilities and prosumers. Addressing effective elements in applying IoT in the smart grid’s future trends is another contribution to this paper.


: Due to the increase of load demand in future, the generation must also increase. The use of traditional resources such as coal, diesel fuels etc., causes global warming which is leading us to shift to renewable energy resources. Renewable energy resources may in include solar, wind, tidal as the source for production. These are used in small quantities as Distribution Generators (DG) at different locations in a bus system. As the generation of these sources is less when connected to grid, we call them as micro-grids. These micro grids generally use these DGs to distribute power to loads, and involve power electronic elements to control the generation. It induces energy into the system but also create a problem of harmonic distortions and voltage sags. To eliminate these sags and harmonics in the micro grid system caused by the power electronic devices employed by the renewable sources, we induce a UPQC (Unified Power Quality Conditioner) system. The UPQC system eliminates the harmonics in the systems and restores the voltage of the micro-grid system. We introduce a new topology called instantaneous reactive power (IRP) theory in the UPQC control to operate in a more efficient way, by utilizing RES (Renewable Energy Sources) at the DC-link. The RES support the UPQC system by injecting the active power generated by the resources through DC-link.


2022 ◽  
pp. 1-20
Author(s):  
Safwan Nadweh ◽  
Zeina Barakat

This chapter describes the upcoming technology for electrical power systems that gives the appropriate solution for the integration of the distributed energy resources. In this chapter, different categories of smart grids have been classified, and the advantages, weakness, and opportunities of each one, are given in addition to determining its own operating conditions. Micro-grids are the most common kind of smart grid. It has been classified under different criteria, such as architecture with different topology (connected mode, island mode, etc.) and demand criteria (simple micro grids, multi-DG, utility) and by capacity into simple micro-grid, corporate micro-grid, and independent micro-grid, and by AC/DC type to DC micro-grids, AC micro-grids, Hybrid micro-grids. Finally, most familiar Micro-grid components have been discussed such as an energy management system along with several types of control and communication systems in addition to the economic study of a micro-grids.


Author(s):  
Safwan Nadweh ◽  
Zeina Barakat

This chapter describes the upcoming technology for electrical power systems that gives the appropriate solution for the integration of the distributed energy resources. In this chapter, different categories of smart grids have been classified, and the advantages, weakness, and opportunities of each one, are given in addition to determining its own operating conditions. Micro-grids are the most common kind of smart grid. It has been classified under different criteria, such as architecture with different topology (connected mode, island mode, etc.) and demand criteria (simple micro grids, multi-DG, utility) and by capacity into simple micro-grid, corporate micro-grid, and independent micro-grid, and by AC/DC type to DC micro-grids, AC micro-grids, Hybrid micro-grids. Finally, most familiar Micro-grid components have been discussed such as an energy management system along with several types of control and communication systems in addition to the economic study of a micro-grids.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 663 ◽  
Author(s):  
Sergio Saponara ◽  
Lucian Mihet-Popa

The special issue “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid” on MDPI Energies presents 20 accepted papers, with authors from North and South America, Asia, Europe and Africa, related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification and on the evolution of the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for smart grid as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) levels are proposed.


Sign in / Sign up

Export Citation Format

Share Document